First one must outflux negative ions because the inner cell membrane is already slightly negative.
This likely refers to the process of creating an action potential in a neuron. Negative ions, such as chloride or potassium, flow into the neuron to depolarize the cell membrane, making it more positive inside. This initiates the electrical signal that travels along the neuron.
No. The negative ions stay within the cell (neuron).An action potential begins (rising phase) with an influx of sodium, a positive ion or cation. The rising phase ends (falling phase) with an efflux of positive ions (potassium). The membrane potential is stabilized again with the action of the ATP dependent sodium-potassium pump.
Increasing extracellular potassium concentration can depolarize the cell membrane potential because potassium ions are leaking out of the cell less efficiently, leading to an accumulation of positive charge outside the cell. This disrupts the normal balance of ions and can make it easier for the cell to depolarize and generate an action potential.
Cells with unstable resting membrane potentials, such as pacemaker cells in the heart or neurons in the brain, can continually depolarize due to the presence of a "funny" current (If) that slowly depolarizes the cell until it reaches the threshold for an action potential to be generated.
Potential hyperpolarization are more negative to the resting membrane potential because of voltage. This is taught in biology.
This likely refers to the process of creating an action potential in a neuron. Negative ions, such as chloride or potassium, flow into the neuron to depolarize the cell membrane, making it more positive inside. This initiates the electrical signal that travels along the neuron.
No. The negative ions stay within the cell (neuron).An action potential begins (rising phase) with an influx of sodium, a positive ion or cation. The rising phase ends (falling phase) with an efflux of positive ions (potassium). The membrane potential is stabilized again with the action of the ATP dependent sodium-potassium pump.
When the membrane potential becomes more negative it is being hyperpolarized. Remember the resting membrane potential is already at a negative state (~70mV). So if you are making a comparison of a membrane potential that is hyperpolarized in comparison to a resting membrane potential, the resting membrane potential is said to be more depolarized.When the membrane potential becomes more positive it is called depolarization.
If a resting neuron is stimulated and there is an inward flow of positive charges into the cell, the membrane potential will depolarize, meaning the inside of the cell becomes less negative. This can trigger an action potential if the depolarization reaches the threshold level.
Increasing extracellular potassium concentration can depolarize the cell membrane potential because potassium ions are leaking out of the cell less efficiently, leading to an accumulation of positive charge outside the cell. This disrupts the normal balance of ions and can make it easier for the cell to depolarize and generate an action potential.
Cells with unstable resting membrane potentials, such as pacemaker cells in the heart or neurons in the brain, can continually depolarize due to the presence of a "funny" current (If) that slowly depolarizes the cell until it reaches the threshold for an action potential to be generated.
Potential hyperpolarization are more negative to the resting membrane potential because of voltage. This is taught in biology.
If the permeability of a resting axon to sodium ion increases, more sodium ions will flow into the cell, leading to depolarization and the generation of an action potential. If the permeability decreases, fewer sodium ions will enter, making it harder to depolarize the cell and initiate an action potential.
Under normal circumstances action potential will proceed unilaterally. An action potential cannot proceed down an axon and depolarize in the reverse direction on the same axon. It must carry information on one axon in one direction and then on another axon in a separate direction. In a lab you can depolarize neurons in the middle of an axon and it will depolarize bilaterally.
No, hyperpolarization graded potentials do not lead to action potentials. Hyperpolarization makes the membrane potential more negative, which inhibits the generation of an action potential by increasing the distance from the threshold potential needed to trigger an action potential.
Depolarization is the initial phase of the action potential characterized by a rapid influx of sodium ions into the cell, causing a change in membrane potential from negative to positive. This occurs when voltage-gated sodium channels open in response to a threshold stimulus, leading to the depolarization of the cell membrane.
The negative after-potential is a brief hyperpolarization phase following an action potential in a neuron. This phase occurs as potassium ions continue to exit the cell, leading to a temporary increase in membrane potential beyond the resting state. It is important for re-establishing the resting membrane potential and preparing the neuron for the next action potential.