Yes, because the two extremes of the phenotype distribution are selected against. Consider human height as an example of this type of selection and think of a normally distributed Bell curve.
The three patterns of natural selection are directional selection, stabilizing selection, and disruptive selection. Directional selection favors individuals at one extreme of a trait distribution, stabilizing selection favors the intermediate phenotype, and disruptive selection favors individuals at both extremes of a trait distribution.
Directional selection favors individuals at one extreme of a trait distribution, leading to a shift in the population's trait mean over time. In contrast, stabilizing selection favors individuals with intermediate traits, reducing variation and maintaining the status quo by selecting against extremes. While directional selection promotes change in a trait, stabilizing selection promotes stability within a population's traits.
Three types of selection on polygenic traits are stabilizing selection, directional selection, and disruptive selection. Stabilizing selection favors intermediate phenotypes, reducing variation and maintaining a trait's average. Directional selection shifts the trait's average in one direction, often due to environmental changes. Disruptive selection favors extreme phenotypes over intermediate ones, potentially leading to speciation by promoting diversity within a trait.
To determine which form of natural selection is represented on the chart, it would be essential to examine the characteristics of the population depicted. Stabilizing selection favors average traits, disruptive selection favors extreme traits, and directional selection favors one extreme over the other. Without seeing the chart, it’s impossible to specify which type is shown, but you can identify the type by looking for these patterns in trait distribution.
The most common type of natural selection is stabilizing selection. This type of selection favors average traits in a population, reducing genetic diversity and maintaining the status quo of a population's characteristics.
The three patterns of natural selection are directional selection, stabilizing selection, and disruptive selection. Directional selection favors individuals at one extreme of a trait distribution, stabilizing selection favors the intermediate phenotype, and disruptive selection favors individuals at both extremes of a trait distribution.
It is stabilizing selection
When natural selection favors the intermediate version of a characteristic, it is referred to as stabilizing selection. It is the opposite of disruptive selection.
Directional selection favors individuals at one extreme of a trait distribution, leading to a shift in the population's trait mean over time. In contrast, stabilizing selection favors individuals with intermediate traits, reducing variation and maintaining the status quo by selecting against extremes. While directional selection promotes change in a trait, stabilizing selection promotes stability within a population's traits.
That would be the Stabilizing Selection where there will me not a lot of genetic variation. The curve of the population allele frequency would be quite thin with the extreme being in the middle.
Three types of selection on polygenic traits are stabilizing selection, directional selection, and disruptive selection. Stabilizing selection favors intermediate phenotypes, reducing variation and maintaining a trait's average. Directional selection shifts the trait's average in one direction, often due to environmental changes. Disruptive selection favors extreme phenotypes over intermediate ones, potentially leading to speciation by promoting diversity within a trait.
To determine which form of natural selection is represented on the chart, it would be essential to examine the characteristics of the population depicted. Stabilizing selection favors average traits, disruptive selection favors extreme traits, and directional selection favors one extreme over the other. Without seeing the chart, it’s impossible to specify which type is shown, but you can identify the type by looking for these patterns in trait distribution.
The most common type of natural selection is stabilizing selection. This type of selection favors average traits in a population, reducing genetic diversity and maintaining the status quo of a population's characteristics.
Disruptive selection produces a distribution of phenotypes opposite to that of stabilizing selection. While stabilizing selection favors intermediate phenotypes and reduces variation, disruptive selection favors extreme phenotypes at both ends of the spectrum, leading to increased variation within a population. This can result in two or more distinct forms, promoting speciation over time.
Well, Directional Selections and Stabilizing selections are different because in Directional Selection, the frequency of a particular trait moves in one direction in a range, while in Stabilizing Selection, the distribution becomes narrower, tending to "stabilize" the average by increasing the proportion of similar individual. Also, I'm not sure about this but I think the continued gene flow tends to decrease the diversity between populations.
Disruptive selection produces a distribution of phenotypes that is opposite to that of stabilizing selection. While stabilizing selection favors intermediate phenotypes and reduces variation, disruptive selection favors extreme phenotypes at both ends of the spectrum, leading to increased variation within a population. This can result in the emergence of two distinct phenotypic groups, potentially leading to speciation over time.
Stabilizing selection is where a population is favored by just the right amount of a certain trait, and if they don't have the right amount of that certain trait then they die. Example: Human babies and birth weight, if the baby is too small, i gets sick. If the baby is too big, it cannot get through the pelvis; but just the right weight and it will come out lively and well. Disruptive selection is when an animal has to fit in with its environment; I.E., camouflage.