answersLogoWhite

0

A particle - such as a photon - has a certain probability of being in different places. It can't be known for sure, in advance, where it will actually be located. An experiment that focuses on particle properties may then find that the particle impacted in a specific place - but this can't be known in advance.


User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Natural Sciences

How to Put these photons in order of increasing energy?

To arrange photons in order of increasing energy, you can use the equation E = hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon. Photons with higher frequency will have higher energy. So, simply compare the frequencies of the photons to determine their energy order.


Can Energy of a photon be any value along a continuous spectrum of energies?

I believe it can - the energy of a photon is the product of the frequency and Plank's constant - and as far as I know, the frequency is not quantized.


If the photon has a frequency of 4 x 1015 Hz how did the energy of the electron change?

If the change in energy of electron is totally exhibited as a photon then the energy = h times frequency. h = 6.626 x 10 to -34 J s Simply multiply h and frequency you would get the energy in joule


Which has the greater frequency a 300 nm photon or a 500 nm photon?

frequency = 1/s c = m/s lambda = m (wavelength) c/lambda m/s/m= frequency 1/s 300,000E9mm/s / 300nm > 300,000E9nm/s / 500nm So no, the shorter the wavelength, the higher the frequency. This is why very small waves such as gamma waves are very dangerous; they have a very high frequency compared to feet long waves such as Radio waves.


What are the frequency and wavelength of the photon?

c = wavelength X frequency, where c is the speed of light, which is 299,792,458 m/s. So you need the wavelength of the photon. Then you divide c/wavelength and the result will be the frequency.

Related Questions

The energy of a photon depends on what?

The energy of a photon depends on it's frequency


What is the relationship between photon frequency and the energy of a photon?

The relationship between photon frequency and energy is direct and proportional. As the frequency of a photon increases, its energy also increases. This relationship is described by the equation E hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon.


Which is more energetic a red photon or a blue photon?

The energy of a photon is inversely propotional to its wavelength. The wavelength of a blue photon is less than that of a red photon. That makes the blue photon more energetic. Or how about this? The energy of a photon is directly proportional to its frequency. The frequency of a blue photon is greater than that of a red photon. That makes the blue photon more energetic. The wavelength of a photon is inversely proportional to its frequency. The the longer the wavelength, the lower the frequency. The shorter the wavelength, the higher the frequency.


Which is the relationship between photon energy and frequency?

Photon energy is directly proportional to frequency. This relationship is described by the equation E = hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon. This means that as frequency increases, photon energy also increases.


Relationship between frequency and photon energy?

The frequency of a photon is directly proportional to its energy according to the equation E=hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon. This means that higher frequency photons have higher energy, and vice versa.


What is the mathematical relationship between frequency and energy?

The mathematical relationship between frequency and energy is given by the formula E = hf, where E is the energy of a photon, h is Planck's constant, and f is the frequency of the photon. This equation shows that the energy of a photon is directly proportional to its frequency.


What is the energy in a photon of light proportional to?

The amount of energy in a photon of light is proportional to the frequency of the corresponding light wave.... frequency of the electromagnetic radiation of which the photon is a particle.


How do you find energy when given frequency?

The energy of a photon of electromagnetic radiation is(Photon's frequency) times (Planck's Konstant) .


What is the frequency of a photon with wavelength 565nm?

The frequency of a photon can be calculated using the equation: frequency = speed of light / wavelength. Plugging in the values for speed of light and wavelength, the frequency of a photon with a wavelength of 565nm is approximately 5.31 x 10^14 Hz.


How do you calculate photon flux given v?

Photon flux can be calculated using the formula: photon flux = v * E, where v is the frequency of the photons and E is the energy of each photon. By multiplying the frequency of the photons by the energy of each photon, you can determine the photon flux.


What is the energy of a photon is related to?

i think its realted to frequency


What energy of a photon is related to?

its frequency