answersLogoWhite

0

What else can I help you with?

Continue Learning about Natural Sciences

What biochemical tool would be use to cut a plasmid?

Restriction enzymes would be used to cut a plasmid. These enzymes recognize specific DNA sequences and cleave the DNA at those sites. This allows for the insertion of desired DNA sequences into the plasmid.


How does ligating the plasmid vector and P. putida DNA in the presence of a restriction enzyme increase recombination?

Ligating the plasmid vector and P. putida DNA in the presence of a restriction enzyme increases recombination by generating compatible ends on both the plasmid and the target DNA. The restriction enzyme cuts the DNA at specific sites, producing cohesive (sticky) or blunt ends that can easily anneal. When the plasmid vector and the P. putida DNA are mixed, these complementary ends facilitate the ligation process, allowing for more efficient insertion of the target DNA into the plasmid. This enhances the likelihood of successful recombination events, enabling the creation of recombinant DNA molecules.


To produce a recombinant plasmid and the foreign DNA are cut with a different restriction enzyme?

When producing a recombinant plasmid, the plasmid and foreign DNA are cut with the same restriction enzyme(s) to generate complementary sticky ends for ligation. Using different restriction enzymes would create incompatible ends that cannot be ligated together effectively, making it difficult to form a functional recombinant plasmid.


What is the function of restriction enzymes in the process of DNA recombination?

First, a specific enzyme is needed to cut the DNA from the donor genes at a specific site. This enzyme is called a restriction enzyme.The enzyme is used to cut out a piece of DNA that contains one or more desired genes from the donor's DNA. Next, a vector is needed to receive the donor DNA. Most frequently, a naturally occurring circular piece of bacterial DNA, called a plasmid, is used for this purpose. Finally, an enzyme is used to "stitch" the donor DNA into the plasmid vector. This enzyme is called ligase, and it creates permanent bonds between the donor DNA and the plasmid DNA. The result is that the donor DNA is incorporated into the bacterial plasmid, forming the recombinant DNA (rDNA)


Which Restriction enzyme are studied in Recombinant DNA Technology?

It's not the restriction enzymes that are studied, its the DNA. The enzyme cuts or "restricts" the DNA strand at a known sequence of nucleotides. Different enzyme, different sequence. For a Biomanufacturing application, where we want to insert foreign DNA, the gene of interest is cut and spliced with a restriction enzyme into a recombinant plasmid, transformed into a bacteria, and sent merrily on it's way to make Insulin, or whatever. With an unknown piece of DNA (a functional gene that makes a protein of interest or is being studied), the plasmid has "restriction sites" or nucleotide sequences, for several restriction enzymes, all of which I have mapped out. The unknown piece of DNA is cut at each end by a single restriction enzyme and inserted into the plasmid, which gives me some landmarks. I insert the plasmid into a bacteria, grow a culture so the bacteria makes many millions of copies of the plasmid, extract the plasmid, and run an experiment called a restriction digest. The restriction digests are a series of reaction with single enzyme and combinations of two and three enzymes, all cutting the plasmid at different nucleotide sequences. Then I run an agarose gel electrophoresis, which separates all the different pieces of DNA by size, and do an analysis called a Restriction Map. This counts the DNA fragments and their sizes, which enzyme and combination of enzymes produced which sizes and how many fragments, which enzyme cuts where, which cuts were definitely in the known part of the plasmid, which were probably in the unknown DNA, adding up nucleotide sequence numbers to make sure different mapping guesses agree, etcetera, etcetera, and so forth. Until at last, a map of the size and restriction sites of the unknown DNA insert into the known plasmid vector is deduced. This used to be done by hand, but there are computer programs that do it now. This is Research, the Technology is down the line a few steps when the gene has been characterized, the protein produced has been characterized, the trials are done, and the restriction enzyme to insert the gene into the bacteria for Bioman has been established

Related Questions

What biochemical tool would be use to cut a plasmid?

Restriction enzymes would be used to cut a plasmid. These enzymes recognize specific DNA sequences and cleave the DNA at those sites. This allows for the insertion of desired DNA sequences into the plasmid.


To produce a recombinant plasmid and the foreign DNA are cut with a different restriction enzyme?

When producing a recombinant plasmid, the plasmid and foreign DNA are cut with the same restriction enzyme(s) to generate complementary sticky ends for ligation. Using different restriction enzymes would create incompatible ends that cannot be ligated together effectively, making it difficult to form a functional recombinant plasmid.


What is the function of restriction enzymes in the process of DNA recombination?

First, a specific enzyme is needed to cut the DNA from the donor genes at a specific site. This enzyme is called a restriction enzyme.The enzyme is used to cut out a piece of DNA that contains one or more desired genes from the donor's DNA. Next, a vector is needed to receive the donor DNA. Most frequently, a naturally occurring circular piece of bacterial DNA, called a plasmid, is used for this purpose. Finally, an enzyme is used to "stitch" the donor DNA into the plasmid vector. This enzyme is called ligase, and it creates permanent bonds between the donor DNA and the plasmid DNA. The result is that the donor DNA is incorporated into the bacterial plasmid, forming the recombinant DNA (rDNA)


Which Restriction enzyme are studied in Recombinant DNA Technology?

It's not the restriction enzymes that are studied, its the DNA. The enzyme cuts or "restricts" the DNA strand at a known sequence of nucleotides. Different enzyme, different sequence. For a Biomanufacturing application, where we want to insert foreign DNA, the gene of interest is cut and spliced with a restriction enzyme into a recombinant plasmid, transformed into a bacteria, and sent merrily on it's way to make Insulin, or whatever. With an unknown piece of DNA (a functional gene that makes a protein of interest or is being studied), the plasmid has "restriction sites" or nucleotide sequences, for several restriction enzymes, all of which I have mapped out. The unknown piece of DNA is cut at each end by a single restriction enzyme and inserted into the plasmid, which gives me some landmarks. I insert the plasmid into a bacteria, grow a culture so the bacteria makes many millions of copies of the plasmid, extract the plasmid, and run an experiment called a restriction digest. The restriction digests are a series of reaction with single enzyme and combinations of two and three enzymes, all cutting the plasmid at different nucleotide sequences. Then I run an agarose gel electrophoresis, which separates all the different pieces of DNA by size, and do an analysis called a Restriction Map. This counts the DNA fragments and their sizes, which enzyme and combination of enzymes produced which sizes and how many fragments, which enzyme cuts where, which cuts were definitely in the known part of the plasmid, which were probably in the unknown DNA, adding up nucleotide sequence numbers to make sure different mapping guesses agree, etcetera, etcetera, and so forth. Until at last, a map of the size and restriction sites of the unknown DNA insert into the known plasmid vector is deduced. This used to be done by hand, but there are computer programs that do it now. This is Research, the Technology is down the line a few steps when the gene has been characterized, the protein produced has been characterized, the trials are done, and the restriction enzyme to insert the gene into the bacteria for Bioman has been established


What is the biochemical tool that scientists use to cut plasmid?

Scientists use enzymes known as restriction endonucleases to cut plasmid DNA at specific sequences. These enzymes recognize and cleave DNA at specific sites, allowing researchers to manipulate the plasmid for various genetic engineering applications.


Why use bam h1 ans sau3a1 in plasmid transformation?

BamHI and Sau3A1 are restriction enzymes that can be used to linearize or digest plasmid DNA during the transformation process. Linearizing the plasmid with these enzymes makes it easier for the foreign DNA to be inserted and integrated into the plasmid. This helps in efficiently producing recombinant plasmids with the desired DNA insert.


Which restriction enzyme did you use to cut the DNA?

The restriction enzyme used to cut the DNA was EcoRI.


What is the most logical sequence of steps for splicing foreign DNA into a plasmid and inserting the plasmis into a bacterium?

Cut the plasmid and foreign DNA with the same restriction enzyme to create complementary sticky ends. Mix the cut plasmid and foreign DNA together and ligate them using DNA ligase. Introduce the ligated plasmid into the bacterium using a method like transformation, where the bacterium uptakes the plasmid. Select for transformed bacteria using antibiotic resistance or another selectable marker on the plasmid.


If you took a linear piece of DNA and cut it with the restriction enzyme EcoRI and it had three restriction sites for EcoRI, how many fragments would you produce What if you had a circular piece of DNA?

If the plasmid has 3 recognition sequences for a given restriction endonuclease, then 4 linear DNA fragments are obtained because, if the DNA is linear then the number of fragments obtained is (N+1) whereas if the DNA is circular then the number of fragments obtained will be N for N recognition sequences for the given restriction endonuclease in a plasmid.


When you run a gel of a plasmid that has been digested with a single enzyme for which there is a single restriction site on the plasmid why do you sometimes get more then one band?

There are two possible reasons, and it may help enrich your digest concentrations by looking into these two possible solutions: 1. Incomplete digestion. The migration of an untreated plasmid travels faster that linearized DNA. The apparent band size of a circular DNA may be as much as 500bp smaller than its linearized counterpart. 2. Perhaps the agar wasn't fully melted when the gel was prepared. This can cause resolution problems, and sometimes a smear would show up. 3. The enzyme used is one of the more uncommon enzymes (noted by the volume the enzyme came in), and so these may be more picky at its turnover rate, leading to partial digestions. Most of the time a restriction enzyme does its job really well if it was allowed to digest 1-2ug of DNA for at least 2 hours for NEB brand of enzymes. If it was just a diagnostic restriction digest, then you can predict what those bands would look like if it was a partial digest. Good luck.


How can i know if my bacteria contain plasmid or not?

You can determine if your bacteria contain a plasmid by performing a plasmid extraction followed by gel electrophoresis to visualize the presence of plasmid DNA. Other methods include PCR amplification of plasmid-specific sequences or using molecular biology techniques like restriction enzyme digestion to confirm the presence of a plasmid.


An enzyme that cuts double-stranded DNA at specific nucleotide sequences?

Such an enzyme is called a restriction endonuclease