According to Kepler's Third Law of Planetary Motion, the orbital period of a planet increases with the radius of its orbit. Specifically, the square of the orbital period is proportional to the cube of the semi-major axis of its orbit. Therefore, if the radius of a planet's orbit increases, its orbital period will also increase, resulting in a longer time required to complete one full orbit around the sun or central body.
The distance of a planet from the sun affects its orbital period. Generally, the farther a planet is from the sun, the longer its orbital period will be. This relationship is described by Kepler's third law of planetary motion, which states that the square of a planet's orbital period is directly proportional to the cube of its average distance from the sun.
Mars has an orbital period of approximately 687 Earth days.
Yes, spot on, good guess . .
A planet's orbital period is related to its distance from the Sun by Kepler's third law, which states that the square of the orbital period is proportional to the cube of the semi-major axis of the orbit. For an orbital period of 3 million years, the planet would need to be located at a distance of approximately 367 AU from the Sun.
Neptune has 13 known moons and an orbital period of about 60190 Earth days.
A planet's orbital period is also known as its year.
Orbital period is the time it takes a planet to go around its star once.
The distance of a planet from the sun affects its orbital period. Generally, the farther a planet is from the sun, the longer its orbital period will be. This relationship is described by Kepler's third law of planetary motion, which states that the square of a planet's orbital period is directly proportional to the cube of its average distance from the sun.
To calculate the orbital period of a planet, you can use Kepler's third law of planetary motion. The formula is T2 (42 r3) / (G M), where T is the orbital period, r is the average distance from the planet to the sun, G is the gravitational constant, and M is the mass of the sun. Simply plug in the values for r and M to find the orbital period of the planet.
Mars has an orbital period of approximately 687 Earth days.
Mercury
Yes, spot on, good guess . .
A planet's orbital period is related to its distance from the Sun by Kepler's third law, which states that the square of the orbital period is proportional to the cube of the semi-major axis of the orbit. For an orbital period of 3 million years, the planet would need to be located at a distance of approximately 367 AU from the Sun.
That is that planet's "year", or its orbital period.
Yes, the square of the orbital period of a planet is proportional to the cube of the average distance of the planet from the Sun. This relationship is known as Kepler's Third Law of Planetary Motion. It describes the mathematical relationship between a planet's orbital period and its average distance from the Sun.
Mercury is the closest planet to the Sun and has an orbital period of 88 Earth days. (Pluto in contrast has an orbital period of about 248 Earth years.)
A planet's orbital radius directly affects its orbital period through Kepler's third law of planetary motion. The farther a planet is from the star it orbits, the longer its orbital period will be, assuming all other factors remain constant. This relationship is expressed mathematically as T^2 ∝ r^3, where T is the orbital period and r is the orbital radius.