To calculate the current draw of a 480-volt, 3-phase, 35 kW heating element, you can use the formula:
[ I = \frac{P}{\sqrt{3} \times V} ]
where ( I ) is the current in amps, ( P ) is the power in watts, and ( V ) is the voltage. Substituting the values:
[ I = \frac{35000}{\sqrt{3} \times 480} \approx 42.1 , \text{amps} ]
Therefore, the heating element will draw approximately 42.1 amps.
Yes, for a 15HP 3-phase 415V AC motor, each phase will draw approximately 26 Amps of current when running under normal operating conditions. This results in a total current draw of 26 Amps per phase for the motor.
For a 1hp 3-phase motor, the current draw will depend on the voltage supply. Typically, at 230V, a 1hp 3-phase motor will draw around 3.6 amps. However, this value may vary based on the motor efficiency and power factor.
Assuming it is a 208-volt line voltage (as normal in 3-phase) the phase voltage is that divided by sqrt(3), or 120 volts. Each phase has to supply 10 kW so the current on each phase is 83.3 amps.
To calculate the amperage for a 10kW heater on a 3-phase 220V system, use the formula: Amps = (kW x 1000) / (√3 x Volts). So, Amps = (10 x 1000) / (√3 x 220) = 26.18 amps per phase. Therefore, the total current drawn by the heater is 26.18 amps per phase multiplied by 3, which equals approximately 78.54 amps.
To calculate the amperage, you can use the formula: Amps = (kW × 1000) / (√3 × Volts). Plugging in the values, we get: Amps = (45 × 1000) / (√3 × 208) ≈ 131.1 amps. So, the hot water heater would draw approximately 131.1 amps.
Current (Amps) = Power (Watt)/Voltage (V) Therefore a 4500W heating element will draw 18.75A = 4500W/240V
A single phase 10 HP motor will draw aproximately 50 amps. A three phase 10 HP motor will draw aproximately 28 amps.
Yes, for a 15HP 3-phase 415V AC motor, each phase will draw approximately 26 Amps of current when running under normal operating conditions. This results in a total current draw of 26 Amps per phase for the motor.
21.739 a 21.739 a
For a single phase circuit, the equation you are looking for is I = W/E. Amps = Watts/Volts.
For a 1hp 3-phase motor, the current draw will depend on the voltage supply. Typically, at 230V, a 1hp 3-phase motor will draw around 3.6 amps. However, this value may vary based on the motor efficiency and power factor.
Assuming it is a 208-volt line voltage (as normal in 3-phase) the phase voltage is that divided by sqrt(3), or 120 volts. Each phase has to supply 10 kW so the current on each phase is 83.3 amps.
To calculate the amperage for a 10kW heater on a 3-phase 220V system, use the formula: Amps = (kW x 1000) / (√3 x Volts). So, Amps = (10 x 1000) / (√3 x 220) = 26.18 amps per phase. Therefore, the total current drawn by the heater is 26.18 amps per phase multiplied by 3, which equals approximately 78.54 amps.
To calculate the amperage, you can use the formula: Amps = (kW × 1000) / (√3 × Volts). Plugging in the values, we get: Amps = (45 × 1000) / (√3 × 208) ≈ 131.1 amps. So, the hot water heater would draw approximately 131.1 amps.
For a 1.5 hp 230v 3 phase motor, you can calculate the amperage using the formula: Amps = (HP x 746) / (Volts x Efficiency x Power Factor x √3). Assuming an efficiency of 0.85 and a power factor of 0.8, the amperage draw would be approximately 4.3 Amps.
Assuming the power factor is 1, a 10 hp motor operating at 600 volts in a three-phase system would draw approximately 13.33 amps.
This depends on what voltage the range is rated for and if it is single phase or three phase. At 220 volts single phase it is about 60 amps, 240 v single phase , 53 amps and at 480 v three phase about 15 amps.