Mass (g) = Mr * Moles If you rearrange it, you get Moles = Mass/Mr Working with a 2dp periodic table you get: Moles = 2/1.01 =1.98 There are 1.98 moles of hydrogen in 2g of H2 gas.
To calculate the moles of hydrogen needed to produce 68 grams of ammonia (NH₃), we start with the balanced chemical equation for the synthesis of ammonia: N₂ + 3H₂ → 2NH₃. The molar mass of ammonia is approximately 17 g/mol, so 68 grams of NH₃ corresponds to 68 g / 17 g/mol = 4 moles of NH₃. Since 3 moles of hydrogen are required for every 2 moles of ammonia, the moles of hydrogen needed is (4 moles NH₃) × (3 moles H₂ / 2 moles NH₃) = 6 moles of H₂. Therefore, 6 moles of hydrogen must react to produce 68 grams of ammonia.
To calculate the number of atoms in 3.4 grams of hydrogen peroxide, you first convert the grams to moles using the molar mass of hydrogen peroxide. Then, you use Avogadro's number to convert moles to atoms. There are approximately 6.022 x 10^23 atoms in 1 mole of a substance.
16 grams of oxygen how many moles is 0,5 moles.
11 g hydrogen are needed.
In 1 mole of water (H2O), there are 2 moles of hydrogen (H). This means that in 2.08 moles of water, there are 2.08 x 2 = 4.16 moles of hydrogen. To convert moles to grams, we use the molar mass of hydrogen: 4.16 moles x 1.01 g/mol = 4.22 grams of hydrogen.
To find the number of moles of hydrogen gas, we first need to convert the mass of hydrogen gas from grams to moles using the molar mass of hydrogen gas (2 g/mol). 5.04 grams of hydrogen gas is equal to 5.04 g / 2 g/mol = 2.52 moles of hydrogen gas.
There are 67.2 grams of hydrogen in 5.60 moles of methane. Methane (CH4) has one carbon atom and four hydrogen atoms, so the molar mass of CH4 is 16 grams/mol (carbon) + 4 grams/mol (hydrogen) = 20 grams/mol. In 5.60 moles of CH4, there are 5.60 moles x 4 mol of hydrogen/mol of CH4 = 22.4 moles of hydrogen. Finally, converting moles to grams, 22.4 moles x 1 gram/mol = 67.2 grams of hydrogen.
None. There is no hydrogen in sodium
To calculate the number of moles in 454 grams of sodium, you need to divide the given mass by the molar mass of sodium. The molar mass of sodium is approximately 23 grams/mol. Therefore, 454 grams of sodium is equal to 454/23 = 19.74 moles of sodium.
How many hydrogen atoms are in 35.0 grams of hydrogen gas?
This cannot be answered because it is essential to know what element you're dealing with here. 8.2 grams of iron will contain considerably less atoms than 8.2 of hydrogen. Therefore, the number of moles in 8.2 grams of iron will differ from the number of moles in 8.2 grams of hydrogen.
The molar mass of sodium hydrogen carbonate is 84 grams per mole, therefore 0.5 moles of it weighs 42 grams.
Mass (g) = Mr * Moles If you rearrange it, you get Moles = Mass/Mr Working with a 2dp periodic table you get: Moles = 2/1.01 =1.98 There are 1.98 moles of hydrogen in 2g of H2 gas.
3.65 grams of water is equal to .203 moles of H2O. This means there is also .203 moles of H2 present, or .408 grams.
The synthesis reaction is 2 H2 + O2 = 2 H2O. Every two moles of hydrogen reacts with one mole of oxygen to make two moles of water. Then 30.0 grams of water is 1.67 moles, and 1.67 moles of H2 has a mass of 3.37 grams. 25.0 grams of O2 is .781 moles, so 1.562 moles of H2 are needed, or 3.15 grams.
To find the number of moles in 18.0 grams of hydrogen gas, you need to divide the given mass by the molar mass of hydrogen gas. The molar mass of hydrogen gas (H2) is about 2.016 grams/mol. So, 18.0 grams / 2.016 grams/mol ≈ 8.93 moles of hydrogen gas.