2.08 moles H2O (2 moles H/1 mole H2O)(1.008 grams H/1 mole H)
= 4.19 grams of hydrogen
===================
The synthesis reaction is 2 H2 + O2 = 2 H2O. Every two moles of hydrogen reacts with one mole of oxygen to make two moles of water. Then 30.0 grams of water is 1.67 moles, and 1.67 moles of H2 has a mass of 3.37 grams. 25.0 grams of O2 is .781 moles, so 1.562 moles of H2 are needed, or 3.15 grams.
When 2.5 moles of oxygen react with hydrogen, they react in a 1:2 ratio to produce water. Therefore, 2.5 moles of oxygen will produce 5 moles of water. To convert moles to grams, you'll need to know the molar mass of water, which is approximately 18 grams/mol. So, 2.5 moles of oxygen will produce 90 grams (5 moles x 18 grams/mole) of water.
To find the number of moles in 180 grams of water, divide the mass by the molar mass of water. The molar mass of water is approximately 18 g/mol (2*1 (hydrogen) + 16 (oxygen)). So, 180g ÷ 18 g/mol = 10 moles of water.
At standard conditions, 1 mole of hydrogen reacts with 0.5 moles of oxygen to form 1 mole of water. Therefore, to form 5 moles of water, you will need 5 moles of hydrogen and 2.5 moles of oxygen. The molar mass of water is approximately 18 g/mol, so 5 moles of water would weigh 90 grams.
To make 36 grams of water (H2O), you would need 2 moles of hydrogen. This is because the molecular formula of water is H2O, meaning each molecule of water contains 2 atoms of hydrogen.
3.65 grams of water is equal to .203 moles of H2O. This means there is also .203 moles of H2 present, or .408 grams.
75 grams water is equal to 4,166 moles.
The synthesis reaction is 2 H2 + O2 = 2 H2O. Every two moles of hydrogen reacts with one mole of oxygen to make two moles of water. Then 30.0 grams of water is 1.67 moles, and 1.67 moles of H2 has a mass of 3.37 grams. 25.0 grams of O2 is .781 moles, so 1.562 moles of H2 are needed, or 3.15 grams.
11
When 2.5 moles of oxygen react with hydrogen, they react in a 1:2 ratio to produce water. Therefore, 2.5 moles of oxygen will produce 5 moles of water. To convert moles to grams, you'll need to know the molar mass of water, which is approximately 18 grams/mol. So, 2.5 moles of oxygen will produce 90 grams (5 moles x 18 grams/mole) of water.
To find the number of moles in 180 grams of water, divide the mass by the molar mass of water. The molar mass of water is approximately 18 g/mol (2*1 (hydrogen) + 16 (oxygen)). So, 180g ÷ 18 g/mol = 10 moles of water.
45 g water are obtained.
To determine the amount of oxygen that reacted when burning hydrogen, we can use the balanced chemical equation for the combustion of hydrogen: 2 H₂ + O₂ → 2 H₂O. From the equation, 2 moles of hydrogen produce 2 moles of water, meaning 1 mole of hydrogen produces 1 mole of water. Given that 24.2 grams of hydrogen (approximately 12.1 moles) produce 216 grams of water (approximately 12 moles), we can see that 12 moles of water would require 6 moles of oxygen, which corresponds to about 192 grams of oxygen. Thus, approximately 192 grams of oxygen reacted.
At standard conditions, 1 mole of hydrogen reacts with 0.5 moles of oxygen to form 1 mole of water. Therefore, to form 5 moles of water, you will need 5 moles of hydrogen and 2.5 moles of oxygen. The molar mass of water is approximately 18 g/mol, so 5 moles of water would weigh 90 grams.
To make 36 grams of water (H2O), you would need 2 moles of hydrogen. This is because the molecular formula of water is H2O, meaning each molecule of water contains 2 atoms of hydrogen.
The balanced chemical equation for the reaction between oxygen and hydrogen is2H2 + 02 -> 2H2OThus 2.2 moles of oxygen reacts with 4.4 moles of hydrogen to form 4.4 moles of steam (water in gaseous state).The mass of H2O obtained is thus 4.4 x 18.0 = 79.2g.
There are 1.5 moles of water molecules in a 27 gram sample of water. This is calculated by dividing the mass of the sample (27 grams) by the molar mass of water (18 grams/mol).