You have to say which chemical you have 500 liters of. Moles are not a unit of volume, they refer to a specific number (Avogadro's number) of molecules, and different substances have different molecular sizes.
Molarity (M) is defined as moles of solute/liters of solution. Assuming the final volume is 500 ml (0.5 liters), then M = 1.2 moles/0.5 liters = 2.4 M
8,4 liters of nitrous oxide at STP contain 2,65 moles.
Molarity = moles of solute/Liters of solution 3.42 M NaOH = 1.3 moles NaOH/Liters NaOH Liters NaOH = 1.3 moles NaOH/3.42 M NaOH = 0.38 Liters
Molarity = moles of solute/Liters of solution Without the solute name the mass ( 8 grams ) does no good. Mass of solute (1 mole/molar mass of solute) = moles solute ----------------------then use Molarity equation. ( remember convert to liters )
To find out how many liters of a 0.1 M solution are needed to obtain 0.5 moles, you can use the formula: [ \text{Molarity (M)} = \frac{\text{moles of solute}}{\text{liters of solution}} ] Rearranging this gives: [ \text{liters of solution} = \frac{\text{moles of solute}}{\text{Molarity (M)}} ] Substituting in the values: [ \text{liters of solution} = \frac{0.5 \text{ moles}}{0.1 \text{ M}} = 5 \text{ liters} ] Therefore, you would need 5 liters of a 0.1 M solution to obtain 0.5 moles.
To find the number of moles of sulfuric acid in the solution, multiply the volume of the solution (in liters) by the molarity. First, convert 500 mL to liters by dividing by 1000 (500 mL = 0.5 L). Then, multiply 0.5 L by 0.324 mol/L to get 0.162 moles of sulfuric acid in 500 mL of the 0.324 M solution.
1 mole occupies 22.414 liters So, 1.84 moles will occupy 41.242 liters
Molarity (M) is defined as moles of solute/liters of solution. Assuming the final volume is 500 ml (0.5 liters), then M = 1.2 moles/0.5 liters = 2.4 M
0.5 kiloliters in 500 liters.
Molarity = moles of solute/Liters of solution ( 300 ml = 0.300 Liters ) For our purposes, Moles of solute = Liters of solution * Molarity Moles NaCl = 0.300 Liters * 0.15 M = 0.05 moles NaCl =============
0.5 liters.
Molarity = moles of solute/Liters of solution ( 75.0 ml = 0.075 Liters ) Algebraically manipulate, moles of solute = Liters of solution * Molarity Moles KMnO4 = (0.075 Liters)(0.0950 M) = 7.13 X 10 -3 moles KMnO4 ------------------------------------
8,4 liters of nitrous oxide at STP contain 2,65 moles.
Need moles aluminum oxide first. 51 grams Al2O3 (1 mole Al2O3/101.96 grams) = 0.5002 moles Al2O3 ======================Now, Molarity = moles of solute/Liters of solution (500 ml = 0.500 Liters ) Molarity =0.5002 moles Al2O3/0.500 Liters = 1.0 M Al2O3 solution ----------------------------
Molarity = moles of solute/Liters of solution 3.42 M NaOH = 1.3 moles NaOH/Liters NaOH Liters NaOH = 1.3 moles NaOH/3.42 M NaOH = 0.38 Liters
Molarity = moles of solute/Liters of solution Without the solute name the mass ( 8 grams ) does no good. Mass of solute (1 mole/molar mass of solute) = moles solute ----------------------then use Molarity equation. ( remember convert to liters )
Molarity = moles of solute/liters of solution ( 50 ml = 0.05 liters ) 2.50 Molar NaCl = moles NaCl/0.05 liters solution = 0.125 moles NaCl ( 7.305 grams NaCl )