answersLogoWhite

0

Hyperpolarization means that the membrane potential becames more negative than the resting potential. This means that it is more difficult for an action potential to be triggered at the postsynaptic membrane. This occurs at inhibitory synapses.

Hyperpolarization can be achieved by increasing the permeability of the membrane to potassium or chloride ions. If potassium permeability is increased more potassium ions will leave the cell, down their concentration gradient; if chloride permeability increases chloride ions will enter the cell down their concentration gradient. Both movements will make the inside of the cell more negative ie they will cause hyperpolarization.

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Natural Sciences

What type of membrane potential is generated at the synapse on the postsynaptic membrane?

It can be an excitatory postsynaptic potential (EPSP) or an inhibitory postsynaptic potential (IPSP), depending on the synapse. The EPSP depolarizes the membrane, while the IPSP hyperpolarizes it.


What are neurotransmitters for postsynaptic neuron?

Neurotransmitters are chemical messengers that transmit signals and information from the presynaptic neuron to the postsynaptic neuron at the synapse. They bind to receptors on the postsynaptic neuron, leading to changes in its membrane potential and triggering a new signal to be passed along the neural pathway. Some common neurotransmitters include acetylcholine, dopamine, serotonin, and glutamate.


Which presynaptic cell must have action potentials to produce one or more action potentials in the postsynaptic cell?

The presynaptic cell that must have action potentials to produce one or more action potentials in the postsynaptic cell is the neuron releasing neurotransmitters at the synapse. When an action potential reaches the presynaptic terminal, it triggers the release of neurotransmitters into the synaptic cleft, which then bind to receptors on the postsynaptic cell membrane, leading to the generation of an action potential in the postsynaptic cell.


What goes on when an action potential is transferred from one neuron to the next through a synapse?

When an action potential reaches the axon terminal of the presynaptic neuron, it triggers the release of neurotransmitters into the synaptic cleft. These neurotransmitters then bind to receptors on the postsynaptic neuron, leading to changes in its membrane potential. This process either excites or inhibits the postsynaptic neuron, depending on the neurotransmitter and receptor type involved.


What is the accumulation of multiple EPSPs on a postsynaptic cell is called?

The accumulation of multiple excitatory postsynaptic potentials (EPSPs) on a postsynaptic cell is called temporal or spatial summation. Temporal summation occurs when multiple EPSPs are generated in rapid succession at the same synapse, while spatial summation involves simultaneous EPSPs from multiple synapses. Together, these processes can lead to the depolarization of the postsynaptic membrane and potentially trigger an action potential if the threshold is reached.

Related Questions

What type of membrane potential is generated at the synapse on the postsynaptic membrane?

It can be an excitatory postsynaptic potential (EPSP) or an inhibitory postsynaptic potential (IPSP), depending on the synapse. The EPSP depolarizes the membrane, while the IPSP hyperpolarizes it.


Are graded potentials the same as local potentials?

Postsynaptic potentials are changes in the membrane potential of the postsynaptic terminal of a chemical synapse. Graded potentials are changes in membrane potential that vary in size, as opposed to being all-or-none, and are not postsynaptic potentials.


Is it true that a post synaptic potential is a graded potential that is the result of a neurotransmitter released into the synapse between two neurons?

Yes, that is correct. A postsynaptic potential is a localized change in the membrane potential of a postsynaptic neuron in response to neurotransmitters binding to receptors on its membrane. This results in a graded potential that can either excite or inhibit the postsynaptic neuron's firing.


The activity of acetylcholine in a synapse is terminated by?

Its degradation by a hydrolytic enzyme on the postsynaptic membrane.


Neurotransmitters find their way to and subsequently trigger firing of that neuron?

Excitatory neurotransmitter


A postsynaptic potential is a graded potential that is the result of a neurotransmitter released into the synapse between two neurons?

true


The action potential causes neurotransmitters to be released into the?

synaptic cleft. This release allows the neurotransmitters to bind to receptors on the postsynaptic neuron, leading to changes in its membrane potential and potentially initiating a new action potential in the receiving neuron.


What are the six major components of the synapse?

The six major components of the synapse are the presynaptic terminal, synaptic vesicles, neurotransmitters, synaptic cleft, postsynaptic membrane, and receptor sites. The presynaptic terminal contains synaptic vesicles filled with neurotransmitters that are released into the synaptic cleft when an action potential arrives. The neurotransmitters then bind to receptor sites on the postsynaptic membrane, facilitating communication between neurons. The synaptic cleft is the gap between the presynaptic and postsynaptic neurons, where the transmission occurs.


What is the name of the tiny gap the neurotransmitter has to diffuse across to reach the membrane of the postsynaptic neuron?

The tiny gap that the neurotransmitter has to diffuse across to reach the membrane of the postsynaptic neuron is called the synaptic cleft. It separates the axon terminal of the presynaptic neuron from the dendrite of the postsynaptic neuron.


What are neurotransmitters for postsynaptic neuron?

Neurotransmitters are chemical messengers that transmit signals and information from the presynaptic neuron to the postsynaptic neuron at the synapse. They bind to receptors on the postsynaptic neuron, leading to changes in its membrane potential and triggering a new signal to be passed along the neural pathway. Some common neurotransmitters include acetylcholine, dopamine, serotonin, and glutamate.


Which presynaptic cell must have action potentials to produce one or more action potentials in the postsynaptic cell?

The presynaptic cell that must have action potentials to produce one or more action potentials in the postsynaptic cell is the neuron releasing neurotransmitters at the synapse. When an action potential reaches the presynaptic terminal, it triggers the release of neurotransmitters into the synaptic cleft, which then bind to receptors on the postsynaptic cell membrane, leading to the generation of an action potential in the postsynaptic cell.


What are the three parts of the synapse and what are their functions?

The three parts of a synapse are the presynaptic terminal, the synaptic cleft, and the postsynaptic membrane. The presynaptic terminal releases neurotransmitters into the synaptic cleft, which is the gap between the two neurons. These neurotransmitters then bind to receptors on the postsynaptic membrane, leading to changes in the postsynaptic neuron's activity. This process enables communication between neurons and is essential for transmitting signals throughout the nervous system.