answersLogoWhite

0

acetylcholine

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Natural Sciences

Do all excitatory neurotransmitters have the same effect on organs?

No, not all excitatory neurotransmitters have the same effect on organs. Excitatory neurotransmitters can have specific functions and effects on different organs and systems in the body depending on their receptor types and distribution. For example, glutamate and acetylcholine are excitatory neurotransmitters with distinct roles in the nervous system and organs.


Are neurotransmitters that depress the resting potential called excitatory?

No, neurotransmitters that depress the resting potential are called inhibitory neurotransmitters. Excitatory neurotransmitters have the opposite effect, causing depolarization and increasing the likelihood of an action potential.


Is it true that once the effects of a stimulant wear off the driver could quickly fall asleep?

That is true. Most stimulants work by binding to excitatory neurotransmitter receptors (such as the case with amphetamines), inducing the release of excitatory neurotransmitters (such as dopamine and norepinephrine, in the case of amphetamines), preventing the breakdown of excitatory neurotransmitters (as in the case of Ritalin, cocaine, etc.), or blocking inhibitory receptors (as in the case of caffeine). When this happens, the brain adjusts by reducing its sensitivity to its own excitatory neurotransmitters...especially in the case of adrenaline (epinephrine), noradrenaline (norepinephrine), and dopamine. So, once the stimulant wears off, the body is not only fatigued again, but is actually MORE sleepy than before...making it very easy to fall asleep.


What can excite a neuron or stop it from transmitting?

Excitatory signals, such as neurotransmitters like glutamate, can stimulate a neuron to transmit an electrical impulse. Inhibitory signals, like neurotransmitters GABA, can prevent a neuron from transmitting by hyperpolarizing the cell membrane and decreasing the likelihood of an action potential.


What effect do neurotransmitters from one neuron have on the next neuron?

Neurotransmitters released from one neuron can either excite or inhibit the next neuron. Excitatory neurotransmitters make the receiving neuron more likely to fire an action potential, while inhibitory neurotransmitters make it less likely. This process allows for communication and coordination between neurons in the nervous system.

Related Questions

What is excitatory messages?

There are two kinds of neurotransmitters - INHIBITORY and EXCITATORY. Excitatory neurotransmitters are not necessarily exciting - they are what stimulate the brain. Those that calm the brain and help create balance are called inhibitory. Inhibitory neurotransmitters balance mood and are easily depleted when the excitatory neurotransmitters are overactive.


Do all excitatory neurotransmitters have the same effect on organs?

No, not all excitatory neurotransmitters have the same effect on organs. Excitatory neurotransmitters can have specific functions and effects on different organs and systems in the body depending on their receptor types and distribution. For example, glutamate and acetylcholine are excitatory neurotransmitters with distinct roles in the nervous system and organs.


Are neurotransmitters that depress the resting potential called excitatory?

No, neurotransmitters that depress the resting potential are called inhibitory neurotransmitters. Excitatory neurotransmitters have the opposite effect, causing depolarization and increasing the likelihood of an action potential.


What happens when neurotransmitters communicate an excitatory message to the postsynaptic neuron?

When neurotransmitters communicate an inhibitory message to the postsynaptic neuron:


Is the determination of whether a synapse is excitatory or inhibitory based on what factor?

The determination of whether a synapse is excitatory or inhibitory is based on the type of neurotransmitter released at the synapse. Excitatory synapses release neurotransmitters that promote the firing of the receiving neuron, while inhibitory synapses release neurotransmitters that prevent the firing of the receiving neuron.


How can decision-making in the CNS result from the interaction between the activities of excitatory and inhibitory presynaptic neurons at synapses?

During decision-making, information is processed to choose between two or more alternatives. This involves the interaction of excitatory and inhibitory neurons. This process also involves excitatory and inhibitory neurotransmitters. The post-synaptic action potential is determined by the sum of all signals.


Why are Acetylcholine and Norepinephrine common neurotransmitters?

acetylcholine and norepinephrine are both excitatory neurotransmitters Acetylcholine (learning and memory) Nor-epinephrine gets you fired up (flight or flight) and also gets you focused. Drdenisep@aol.com


What is meant by summation at a synapse and how can the two ways it is accomplished be described?

Summation is the method in which signal transmission between neurons occurs. Summation occurs through excitatory neurotramitters and inhibitory neurotransmitters. Excitatory produces depolarization of the postsynaptic cell. Inhibitory mitigates the effects of an excutatory neurotransmitter. For more information visit the Related Link.


What is the effect of excitatory psychoactive drugs on the brain?

Excitatory psychoactive drugs such as nicotine and cocaine primarily affect the central nervous system. They increase post-synaptic transmissions and may result in addictions and substance abuse. These stimulants increase the alertness of the user by mimicking the action of neurotransmitters or delaying the breakdown of neurotransmitters. They can also affect the transmission of optical signals in the thalamus of the brain.


Is it true that once the effects of a stimulant wear off the driver could quickly fall asleep?

That is true. Most stimulants work by binding to excitatory neurotransmitter receptors (such as the case with amphetamines), inducing the release of excitatory neurotransmitters (such as dopamine and norepinephrine, in the case of amphetamines), preventing the breakdown of excitatory neurotransmitters (as in the case of Ritalin, cocaine, etc.), or blocking inhibitory receptors (as in the case of caffeine). When this happens, the brain adjusts by reducing its sensitivity to its own excitatory neurotransmitters...especially in the case of adrenaline (epinephrine), noradrenaline (norepinephrine), and dopamine. So, once the stimulant wears off, the body is not only fatigued again, but is actually MORE sleepy than before...making it very easy to fall asleep.


What neurotransmitters are exclusively inhibitory?

The terms antagonist/agonist only apply to 'exogenous' compounds, namely drugs and toxins, and not neurotransmitters - which are commonly classed according to whether they are excitatory or inhibitory. Examples of a the latter include GABA and glycine.


How is excitatory postsynaptic potential produce?

Excitatory postsynaptic potentials (EPSPs) are produced when neurotransmitters bind to excitatory receptors on the postsynaptic membrane, causing a depolarization of the neuron. This depolarization results in the opening of ion channels that allow positively charged ions, such as sodium and calcium, to enter the neuron, further depolarizing it. The cumulative effect of EPSPs from multiple synapses can reach the threshold for action potential initiation.