increase of temp in 70- 80 degrees
the greater the surface area the easier it is for them to reach and react with substrates
The pKA of enzyme affects its ionization which could alter enzyme activity. For pH < pKa, the value of vmax is constant and that for pH > pKa, vmax decreases; ie. enzyme activity starts to decline.
When a regulatory molecule binds to an enzyme, it can cause a conformational change in the enzyme's active site, either activating or inhibiting its function. This change in shape can affect the enzyme's ability to bind substrate molecules and catalyze reactions. Regulatory molecules can help control enzyme activity in response to cellular signals or changes in the environment.
Yes, inhibitors can decrease enzyme activity by binding to the enzyme and preventing substrate binding. Activators can increase enzyme activity by binding to the enzyme and enhancing substrate binding or catalytic activity. Both inhibitors and activators can modulate enzyme activity by changing the enzyme's structure or function.
The binding of a molecule at the allosteric site can induce a conformational change in the enzyme, affecting the active site's shape and activity. This can either increase or decrease the enzyme's affinity for its substrate, leading to changes in the enzyme's catalytic efficiency.
yeh it can
It doesn't
It doesn't
It doesn't
Mostly pH, Temperature, and salt.
pH . Temperature . Substrate's Concentration
If the enzymes are heated they can become deformed and not work as well.
it just does mert cos rochababey said mert !!1
Noncompetitive inhibition and allosteric inhibition both affect enzyme activity, but through different mechanisms. Noncompetitive inhibition binds to a site on the enzyme that is not the active site, causing a change in the enzyme's shape and reducing its activity. Allosteric inhibition, on the other hand, binds to a different site on the enzyme called the allosteric site, which also causes a change in the enzyme's shape and reduces its activity.
A change in pH can affect enzyme activity by altering the enzyme's shape and thus its ability to bind with its substrate. If the pH deviates too much from the optimal range for that specific enzyme, it can denature, leading to a loss of enzyme activity. pH can also affect the ionization state of the amino acid side chains in the enzyme's active site, crucial for substrate binding and catalysis.
The enzyme pepsin shows the greatest change in its rate of action with the least change in pH. Pepsin works optimally at a highly acidic pH of around 2, and even small changes in pH can significantly impact its activity.
Temperature can affect peroxidase enzymes by influencing their activity level. Generally, increasing temperature can initially enhance enzyme activity up to a point, called the optimal temperature. Beyond the optimal temperature, the enzyme may denature and lose its functionality.