No, DNA ligase does not help assemble the leading strand. DNA ligase is primarily involved in the final stages of DNA replication, where it seals the nicks in the phosphodiester backbone between Okazaki fragments on the lagging strand. DNA polymerase is responsible for assembling both the leading and lagging strands during DNA replication.
the two strand are antiparallel and the new strand must be formed on the old(parent) strand in opposite directions one of the new strand is formed as a continuous occur in long chain in the 5'_3' directions on 3'_5' strand of dna this is called the leading strand..
The letter that indicates the strand requiring the function of DNA ligase is "Lagging strand." During DNA replication, the lagging strand is synthesized in short fragments called Okazaki fragments, which need to be joined together by DNA ligase to create a continuous strand.
The leading strand would utilize the 3' to 5' template DNA strand as a guide for continuous synthesis of complementary DNA in the 5' to 3' direction by DNA polymerase during DNA replication.
To determine the order of nitrogen bases in the matching lagging strand, you first need to know the sequence of the leading strand. The lagging strand is synthesized in short segments (Okazaki fragments) and runs in the opposite direction of the leading strand. If, for example, the leading strand has the sequence A-T-C-G-A, the corresponding order of nitrogen bases in the lagging strand would be T-A-G-C-T, as adenine pairs with thymine and cytosine pairs with guanine.
One is known as the Leading strand, and the other is known as the Lagging strand.
ssb protein bind to the lagging strand as leading strand is invovled in dna replication and lagging strand is invovled in okazaki fragment formation
The term for the 5' DNA strand is the leading strand.
No, DNA ligase does not help assemble the leading strand. DNA ligase is primarily involved in the final stages of DNA replication, where it seals the nicks in the phosphodiester backbone between Okazaki fragments on the lagging strand. DNA polymerase is responsible for assembling both the leading and lagging strands during DNA replication.
the two strand are antiparallel and the new strand must be formed on the old(parent) strand in opposite directions one of the new strand is formed as a continuous occur in long chain in the 5'_3' directions on 3'_5' strand of dna this is called the leading strand..
The letter that indicates the strand requiring the function of DNA ligase is "Lagging strand." During DNA replication, the lagging strand is synthesized in short fragments called Okazaki fragments, which need to be joined together by DNA ligase to create a continuous strand.
The leading strand would utilize the 3' to 5' template DNA strand as a guide for continuous synthesis of complementary DNA in the 5' to 3' direction by DNA polymerase during DNA replication.
The leading strand is the DNA strand that is synthesized continuously during DNA replication. This is because the polymerase enzyme can add nucleotides in the 5' to 3' direction without interruption as the replication fork opens.
To determine the order of nitrogen bases in the matching lagging strand, you first need to know the sequence of the leading strand. The lagging strand is synthesized in short segments (Okazaki fragments) and runs in the opposite direction of the leading strand. If, for example, the leading strand has the sequence A-T-C-G-A, the corresponding order of nitrogen bases in the lagging strand would be T-A-G-C-T, as adenine pairs with thymine and cytosine pairs with guanine.
The leading strand elongates continuously as DNA unwinds and is replicated. DNA polymerase synthesizes the new strand in a 5' to 3' direction, allowing for continuous addition of nucleotides.
No, both will be synthesized in opposite directions
which statement about dna replication is correct? A. the leading strand is one of the strands of parnetal Dna b. the leading strand is built continuously, and the lagging strand is built in pieces c. the lagging strand is one of the strands of parental Dna d. Dna ligase helps assemble the leading strand e. the lagging strand is built continuously