To find the mass of 1.54 moles of H2O, you can use the molar mass of water. The molar mass of H2O is 18.015 grams/mol. Therefore, the mass of 1.54 moles of H2O would be 1.54 moles * 18.015 grams/mol = approximately 27.75 grams.
You calculate it by using Avogadro's number: 6.022 x10 23 which is one mole of substance. 1.00 x 1024 divided by 6.022 x 1023 = 10 divided by 6.022 = 1.661 mol H2O Use the molar mass of water (18.02 g mol-1) to get to the mass in grams. 18.02 g x 1.661 mol = 29.93 g H2O
The molar mass of water (H2O) is approximately 18.015 g/mol. To find the mass of 3.2 moles of water, you multiply the number of moles by the molar mass: 3.2 moles x 18.015 g/mol = 57.648 g. So, the mass of 3.2 moles of water is approximately 57.648 grams.
249.72 g/mol
To determine the number of moles of water in 72.08g of H2O, we first need to calculate the molar mass of water (H2O). The molar mass of water is approximately 18.015 g/mol (2 hydrogen atoms with a molar mass of 1.008 g/mol each, and 1 oxygen atom with a molar mass of 16.00 g/mol). Next, we use the formula: moles = mass / molar mass. Plugging in the values, we get moles = 72.08g / 18.015 g/mol ≈ 4 moles of water. Therefore, there are approximately 4 moles of water in 72.08g of H2O.
H2O's molar mass is 18 g/mol.
To find the mass of 1.54 moles of H2O, you can use the molar mass of water. The molar mass of H2O is 18.015 grams/mol. Therefore, the mass of 1.54 moles of H2O would be 1.54 moles * 18.015 grams/mol = approximately 27.75 grams.
The molar mass of H2O =(2 atoms H x 1.00794g/mol H) + (1 atom O x 15.9994g/mol O) = 18.0152g/mol H2O1 mole of H2O = 18.0152g H2O1 mole of H2O molecules = 6.022 x 1023 molecules H2OConvert molecules to moles.5.00 x 102g H2O molecules x (1mole H2O/6.022 x 1023 molecules H2O) =8.31 x 10-22 mole H2OConvert moles to grams.8.31 x 10-22 mole H2O x (18.0152g H2O/1mole H2O) = 1.50 x 10-20g H2OAnswer: The mass in grams of 5.00 x 102g H2O molecules = 1.50 x 10-20g H2O
You calculate it by using Avogadro's number: 6.022 x10 23 which is one mole of substance. 1.00 x 1024 divided by 6.022 x 1023 = 10 divided by 6.022 = 1.661 mol H2O Use the molar mass of water (18.02 g mol-1) to get to the mass in grams. 18.02 g x 1.661 mol = 29.93 g H2O
For this you need the atomic (molecular) mass of H2O. Take the number of grams and divide it by the atomic mass. Multiply by one mole for units to cancel. H2O=18.0 grams235 grams H2O / (18.0 grams) = 13.1 moles H2O
Molar mass of H2O = 18.01528 g/mol
To calculate the number of moles in 8g of H2O, we must first calculate the molar mass of H2O (18.015 g/mol). Then, we can use the formula moles = mass / molar mass to find that there are approximately 0.444 moles of H2O in 8g.
There are 3.505 x 10^23 molecules of H2O in 0.583 mol of H2O, because 1 mol of any substance contains 6.022 x 10^23 molecules.
To find the number of molecules in 54.3 g of water (H2O), you first need to convert the mass of water to moles using the molar mass of water (18.015 g/mol). Then, use Avogadro's number (6.022 x 10^23 molecules/mol) to convert moles to molecules. The calculation would be: 54.3 g / 18.015 g/mol = 3.013 moles, then, 3.013 moles * 6.022 x 10^23 molecules/mol = 1.816 x 10^24 molecules of H2O in 54.3 g of water.
To calculate the number of molecules in 2.81g of H2O, you first need to convert grams to moles using the molar mass of water (18.015 g/mol). Then, use Avogadro's number (6.022 x 10^23 molecules/mol) to convert moles to molecules. The calculation would be: 2.81g H2O / 18.015 g/mol = 0.156 moles H2O; 0.156 moles H2O x 6.022 x 10^23 molecules/mol = 9.40 x 10^22 molecules of H2O.
18g/mol
Well let's see: H = 1g O = 16g N = 14g H2O = 18g per mole (1 + 1 + 16) NH3 = 17g per mole (14 + 1 + 1) 18 x 5 = 90 17 x 3.5 = 59.5 90>59.5 .: 5.0 mol H2O has a greater mass than 3.5 mol of NH3