Two molecules of ATP are consumed during the first step of glycolysis, where glucose is converted to glucose-6-phosphate by the enzyme hexokinase.
hey glycolysis is both an anabolic and a catabolic reaction, because at first, your are investing energy which is ATP, then you later harvest ATP with pyruvate (3C compound), and NADH. So it is both processes
The first three-carbon compound produced in glycolysis is glyceraldehyde-3-phosphate (G3P) from the six-carbon glucose molecule. This occurs after the glucose molecule is broken down into two molecules of pyruvate.
The first stage in cellular respiration is known as Glycolysis.
glycolysis it's the first stage, the rest of it occurs in the mitochondria.
http://wiki.answers.com/Q/What_molecule_is_the_reactant_in_the_first_reaction_of_glycolysis"
Hexokinase catalyzes the phosphorylation of glucose to glucose-6-phosphate using ATP as a phosphate donor. This reaction is the first step in glycolysis and plays a crucial role in glucose metabolism in cells.
The first reaction in glycolysis is the phosphorylation of glucose to glucose-6-phosphate by the enzyme hexokinase. This reaction involves the transfer of a phosphate group from ATP to glucose, requiring energy for activation.
The first reaction in glycolysis is the phosphorylation of glucose to glucose-6-phosphate by the enzyme hexokinase. This step consumes one molecule of ATP to phosphorylate glucose, making it more reactive for subsequent steps in glycolysis.
The sixth step of glycolysis, which involves the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate, consists of a phosphorylation reaction where ATP is used as the phosphate source. This step is catalyzed by the enzyme phosphofructokinase-1.
Fructose-6-phosphate to fructose 1,6-bisphosphate. Phosphofructokinase (PFK). Requires ATP, Mg. First majorly regulated step of glycolysis. Irreversible
The source of energy for the first step of glycolysis is the hydrolysis of one molecule of ATP to ADP and inorganic phosphate. This reaction is catalyzed by the enzyme hexokinase and helps to phosphorylate glucose to glucose-6-phosphate.
Glycolysis is the break down of glucose in pyruate and release of energy here are the steps in which glycolysis occurGlucose ------> glucsose-6-phosphate -------> fructose-6-phosphate --------> fructose-1,6-bisphosphate --------> glyceraldhyde-3- phosphate and dihydroxyactone phosphate now dihydroxyacetone phosphate isomerize in glyceraldhyde-3- phosphate ----------- 2 glyceraldhyde -3- phosphate ------------> 1,3-bisphosphoglycerate ---------> 3-phosphoglycerate ----------> 2-phosphoglycerate -----------> phosphoenolpyruate ----------- pyruatein these reactions during reaction 1 and 3 ATP are changed into ADP and so these are called energy consuming reactions and in 7 and 10th step 2 ATP are released in both steps so forming 4 ATP and in end giving net gain of 2 ATP. So in glycolysis fructose is consumed after isomerisation and phosphorylating in 2nd step, Fructose also enter directly in glycolysis in some species which use fruit sugar fructose which first convert in Dfructose which is then phorphorylated in fructose-6-phosphate
during the first step of glycolysis C6 is phosphorylated, turning it into a phosphate ester which is a low energy compound.
Hexokinase
The conversion of glyceraldehyde 3 phosphate to 1, 3 bisphosphoglycerate catalyzed byglyceraldehyde 3 phosphate dehydrogenase using NAD+ and Pi
The first reaction of glycolysis, where glucose is phosphorylated (a phosphate group is added) to give glucose - 6 - phosphate requires ATP. This reaction is catalyzed by the enzyme hexokinase