answersLogoWhite

0

Temperature and energy are two of the variables included when graphing enthalpy and entropy. Enthalpy is made up of the energy, pressure, and volume of a system. Entropy is a way to determine the different ways energy can be arranged.

User Avatar

Wiki User

11y ago

What else can I help you with?

Continue Learning about Natural Sciences

What are the units of enthalpy?

The units for entropy are joules per kelvin (J K-1)


Predict whether the changes in enthalpy entropy and free energy will be positive or negative for the freezing of water and explain your predictions How does temperature affect the spontaneity?

The changes in enthalpy, entropy, and free energy are negative for the freezing of water since energy is released as heat during the process. At lower temperatures, the freezing of water is more spontaneous as the negative change in enthalpy dominates over the positive change in entropy, making the overall change in free energy negative and leading to a spontaneous process.


True or False A large positive value of entropy tends to favor products of a chemical reaction?

True, a large positive value of entropy tends to favor products of a chemical reaction. However, entropy can be offset by enthalpy; a large positive value of enthalpy tends to favor the reactants of a chemical reaction. The true measure to determine which side of a chemical reaction is favored is the change in Gibbs' free energy, which accounts for both entropy and enthalpy, as calculated by: Change in Gibbs = Change in Enthalpy - Temp in Kelvin * Change in Entropy A negative value of Gibbs free energy will always favour the products of a chemical reaction.


How do you calculate melting points and boiling points by using enthalpy and entropy?

The melting point and boiling point of a substance are related to its enthalpy of fusion and vaporization, respectively, and its entropy of fusion and vaporization. The melting point is where the solid and liquid phases are in equilibrium, while the boiling point is where the liquid and vapor phases are in equilibrium. By analyzing the balance between enthalpy and entropy changes during phase transitions, you can predict and calculate melting and boiling points.


Which has maximum entropy of vaporization?

The compound with the highest entropy of vaporization is likely water (H2O), as it has a relatively high boiling point and strong hydrogen bonding interactions that need to be overcome to transition from liquid to vapor phase. This results in a high enthalpy change and thus a high entropy of vaporization.

Related Questions

Is Delta S is the change in enthalpy a measure of randomness?

No, ΔS (change in entropy) and ΔH (change in enthalpy) are not measurements of randomness. Entropy is a measure of the disorder or randomness in a system, while enthalpy is a measure of the heat energy of a system. The change in entropy and enthalpy can be related in chemical reactions to determine the overall spontaneity of the process.


What characteristics of a substance is NOT affected by enthalpy and entropy?

Pressure is not affected by enthalpy and entropy.pressure


What is the definition of enthalpy and entropy?

Enthalpy is the amount of energy released or used when kept at a constant pressure. Entropy refers to the unavailable energy within a system, which is also a measure of the problems within the system.


What could make delta G become negative at a given enthalpy and entropy?

For delta G to become negative at a given enthalpy and entropy, the process must be spontaneous. This can happen when the increase in entropy is large enough to overcome the positive enthalpy, leading to a negative overall Gibbs free energy. This typically occurs at higher temperatures where entropy effects dominate.


What is the relationship between enthalpy, entropy, and free energy in a chemical reaction?

In a chemical reaction, enthalpy, entropy, and free energy are related. Enthalpy is the heat energy exchanged during a reaction, entropy is the measure of disorder or randomness, and free energy is the energy available to do work. The relationship between these three factors is described by the Gibbs free energy equation: G H - TS, where G is the change in free energy, H is the change in enthalpy, S is the change in entropy, and T is the temperature in Kelvin. This equation shows that for a reaction to be spontaneous, the change in free energy must be negative, meaning that the enthalpy change and entropy change must work together in the right direction.


How do you know if a reaction is entropy driven enthalpy driven or driven by both enthalpy and energy?

If the ∆H is positive and the ∆S is positive, then the reaction is entropy driven. If the ∆H is negative and the ∆S is negative, then the reaction is enthalpy driven. If ∆H is positive and ∆S is negative, then the reaction is driven by neither of these. If ∆H is negative and ∆S is positive, then the reaction is driven by both of these.


What could make G become negative at a given enthalpy and entropy?

Changing the temperature


How does gibbs energy relate to the changes in ethalpy and ethropy?

Gibbs energy accounts for both enthalpy (heat) and entropy (disorder) in a system. A reaction will be spontaneous if the Gibbs energy change is negative, which occurs when enthalpy is negative (exothermic) and/or entropy is positive (increased disorder). The relationship between Gibbs energy, enthalpy, and entropy is described by the equation ΔG = ΔH - TΔS, where T is temperature in Kelvin.


What is the relationship between the enthalpy h and entropy s of a reaction that is spontaneous at higher temperatures but not at lower temperatures?

The relationship between enthalpy (H) and entropy (S) is described by the Gibbs free energy equation, ΔG = ΔH - TΔS, where ΔG is the change in Gibbs free energy, ΔH is the change in enthalpy, T is the temperature in Kelvin, and ΔS is the change in entropy. For a reaction to be spontaneous at higher temperatures but not at lower temperatures, the entropy term (TΔS) must dominate over the enthalpy term (ΔH) in the Gibbs free energy equation. This suggests that the increase in entropy with temperature plays a more significant role in driving the reaction towards spontaneity than the enthalpy change.


What are the units of enthalpy?

The units for entropy are joules per kelvin (J K-1)


Predict whether the changes in enthalpy entropy and free energy will be positive or negative for the freezing of water and explain your predictions How does temperature affect the spontaneity?

The changes in enthalpy, entropy, and free energy are negative for the freezing of water since energy is released as heat during the process. At lower temperatures, the freezing of water is more spontaneous as the negative change in enthalpy dominates over the positive change in entropy, making the overall change in free energy negative and leading to a spontaneous process.


What is the relationship between entropy and free energy in thermodynamics?

In thermodynamics, entropy and free energy are related through the equation G H - TS, where G is the change in free energy, H is the change in enthalpy, T is the temperature in Kelvin, and S is the change in entropy. This equation shows that the change in free energy is influenced by both the change in enthalpy and the change in entropy.