answersLogoWhite

0

Because the charge/mass ratio of a nucleus is smaller than the charge/mass ratio of an electron

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Natural Sciences

What two kinds of electron motion are important in determining the magnetic property of a material?

The two main types of electron motion that are important in determining the magnetic property of a material are spin motion and orbital motion. Spin motion refers to the intrinsic angular momentum of an electron, giving rise to its magnetic moment, while orbital motion refers to the movement of electrons around the nucleus within an atom, contributing to the overall magnetic behavior of the material.


What is magnetic moment?

Language plays sometimes a dominant role even in understanding scientific concepts.Magnetic dipole moment and Moment of a magnet, they differ because of the size of the magnetic material. Magnetic dipole is the one with opponent poles but separated by a very smalldistance. But, in case of a long bar magnet, the distance of separation of poles would be larger. In such cases, we calculate the moment of the magnet.Moment of the magnet is equal to the product of the pole strength and the distance between the opposite poles.Dipole magnetic moment is also the same. But in case of dipole formed due to circulation of electron, its dipole moment is got by the product of current and area of loop made by the electron circulation.


How magnetic moment of electron is associated with angular momentum of electron?

magnetic moment of a particle is due to its motion around some other orbits or about its own orbit i.e due to its orbital angular momentum or its spin angular momentum.


What are Magnetic Properties of Metals?

Iron (Fe) Cobalt (Co) and Nickel (Ni) iron, steel, nickel, and cobalt all have magnetic properties. Lodestone is also magnetic and was used to make early compasses a long time ago because it has magnetic metal elements in it.


How does an orbital magnetic field arise?

An orbital magnetic field arises due to the motion of charged particles, such as electrons, as they orbit around the nucleus of an atom. According to classical electromagnetism, moving charges create a magnetic field; thus, as electrons travel in circular or elliptical paths, they generate a magnetic moment. This magnetic moment contributes to the overall magnetic properties of the atom. Additionally, the alignment of these magnetic moments in a material can lead to macroscopic magnetic fields, as seen in ferromagnetic materials.

Related Questions

How magnetic moment originate from motion of electron?

Electrons revolve around the nucleus. A revolving electron is equivalent to a current loop. Hence, it produces a magnetic moment.


Why is magnitude of an electron spin greater than its magnetic moment?

The magnitude of the electron's spin is greater than its magnetic moment because the spin of an electron contributes more to its intrinsic angular momentum than its magnetic moment does. The spin of an electron arises from its intrinsic properties and is a fundamental characteristic of the particle, whereas the magnetic moment is a consequence of the electron's charge and its motion.


Why nucles contributes less magnetic moment than electron magnetic moment due to spin?

Because it is about 10,000 times smaller. The magnetic moment depends on the strength of a magnet's poles, and on its separation; or, in the case of a current loop, the strength of the current, and the area it surrounds.


What is the relationship between an electron's spin angular momentum and its spin magnetic dipole moment?

The relationship between an electron's spin angular momentum and its spin magnetic dipole moment is that the spin magnetic dipole moment is directly proportional to the spin angular momentum. This means that as the spin angular momentum of an electron increases, so does its spin magnetic dipole moment.


What does the magnetic quantum number indicate about an electron's orientation in a magnetic field?

The magnetic quantum number indicates the orientation of an electron's magnetic moment in a magnetic field. It helps determine the direction in which the electron will align itself within the field.


What spinning particle creates a magnetic field?

An electron is a spinning particle that creates a magnetic field. The spinning motion of the electron generates a magnetic dipole moment, resulting in the creation of a magnetic field around the electron.


What two kinds of electron motion are important in determining the magnetic property of a material?

The two main types of electron motion that are important in determining the magnetic property of a material are spin motion and orbital motion. Spin motion refers to the intrinsic angular momentum of an electron, giving rise to its magnetic moment, while orbital motion refers to the movement of electrons around the nucleus within an atom, contributing to the overall magnetic behavior of the material.


Does sulfur have a magnetic property?

The element does have a magnetic moment. This is because there is one pair of electrons and two individual electron molecules in the valence shell. This is to say that the unpaired electron molecules create a magnetic moment. That is sulfur's magnetic property.


What is magnetic moment?

Language plays sometimes a dominant role even in understanding scientific concepts.Magnetic dipole moment and Moment of a magnet, they differ because of the size of the magnetic material. Magnetic dipole is the one with opponent poles but separated by a very smalldistance. But, in case of a long bar magnet, the distance of separation of poles would be larger. In such cases, we calculate the moment of the magnet.Moment of the magnet is equal to the product of the pole strength and the distance between the opposite poles.Dipole magnetic moment is also the same. But in case of dipole formed due to circulation of electron, its dipole moment is got by the product of current and area of loop made by the electron circulation.


How magnetic moment of electron is associated with angular momentum of electron?

magnetic moment of a particle is due to its motion around some other orbits or about its own orbit i.e due to its orbital angular momentum or its spin angular momentum.


What is magnetic moment of elementary particle?

The magnetic moment of an elementary particle, such as an electron, is a measure of its intrinsic magnetic properties. It describes how strongly the particle interacts with an external magnetic field. This property plays a key role in understanding the behavior of particles in the presence of magnetic fields.


How is a magnetic field produced in a atom?

Simple Answer:An isolated atom has three sources for a magnetic field, the electron motion, the electrons' intrinsic magnetic moment and the nuclear magnetic moment.Explanation:First, the electrons around the atom are in motion and if there is a net circulating flow (i.e. a nonzero angular momentum) then the motion of the electrons is a current that produces a magnetic field in basically the same process that any current produces a magnetic field.Second, the electron itself has a magnetic property as a particle called the magnetic moment. The magnetic moment of the particle effectively makes it a tiny permanent magnet. (Other elementary particles have this property also.) The electrons in an atom can be arranged so that the magnetic fields of the individual electrons' magnetic moments add together or cancel each other out. If they do not totally cancel each other out, the atom as a whole then has the property of a tiny magnet. If arranged in a bulk form, like an iron magnet, these electrons can be the primary source of the permanent magnetic field of a material.Third, the nucleus of an atom is also made up of particles with an intrinsic magnetic moment, just as the electron is. In particular, the protons have a large magnetic contribution. It is not often the case that the nuclei of atoms spontaneously align with the nuclei of other atoms to produce a net permanent magnetization of a material, but it is a technologically important characteristic, e.g. for magnetic resonance imaging (MRI).