answersLogoWhite

0

In a uniform field, dipole motion aligns with the field, causing the dipole to rotate until it is parallel to the field.

User Avatar

AnswerBot

3mo ago

What else can I help you with?

Continue Learning about Physics

What is the torque experienced by a dipole in a uniform field?

The torque experienced by a dipole in a uniform field is equal to the product of the magnitude of the dipole moment and the strength of the field, multiplied by the sine of the angle between the dipole moment and the field direction.


What happened when an electric dipole is held in non uniform electric field?

When an electric dipole is held in a non-uniform electric field, the dipole experiences a net torque causing it to align itself in the direction of the field. The dipole will tend to orient itself with its positive end facing towards the direction of the field and its negative end facing away from it. This alignment leads to a potential energy change in the dipole, with the dipole experiencing a force due to the non-uniform field.


Electric dipole in uniform magnetic field?

An electric dipole consists of two equal and opposite charges separated by a distance. When placed in a uniform magnetic field, the charges experience a force in opposite directions due to their opposite velocities in the field. This results in a torque acting to align the dipole along the field lines of the magnetic field.


What is the work done in rotating a electric dipole in uniform electric field from parallel position to anti-parallel position?

The work done in rotating an electric dipole in a uniform electric field from parallel position to anti-parallel position is zero. This is because the torque applied to rotate the dipole is perpendicular to the direction of the electric field, so the work done is zero.


You turn an electric dipole end for end in a uniform electric field.How does the work you do depend on the initial orientation of the dipole with respect to the field?

The work done by you to turn the electric dipole end for end in a uniform electric field depends on the initial orientation of the dipole with respect to the field. If the dipole is initially oriented such that its positive and negative charges are parallel to the electric field, then no net work is done as the electric field does not do any work on the dipole as the electric field lines do not transfer any energy. On the other hand, if the dipole is initially oriented such that its positive and negative charges are perpendicular to the electric field, then work is done by you to turn the dipole as the electric field exerts a force on the charges in the dipole in opposite directions, causing them to move in opposite directions. As a result, you have to do work to move the charges and turn the dipole.

Related Questions

If a magnetic dipole is placed in a magnetic field the dipole is found to have both rotational and translational motion.what would you infer about the magnetic field?

If a magnetic dipole placed in a magnetic field exhibits both rotational and translational motion, it suggests that the magnetic field is not uniform. A non-uniform magnetic field will exert torque on the magnetic dipole, causing it to rotate, and may also impart a force causing translational motion. These observations can help characterize the spatial variation of the magnetic field.


What is the torque experienced by a dipole in a uniform field?

The torque experienced by a dipole in a uniform field is equal to the product of the magnitude of the dipole moment and the strength of the field, multiplied by the sine of the angle between the dipole moment and the field direction.


What happened when an electric dipole is held in non uniform electric field?

When an electric dipole is held in a non-uniform electric field, the dipole experiences a net torque causing it to align itself in the direction of the field. The dipole will tend to orient itself with its positive end facing towards the direction of the field and its negative end facing away from it. This alignment leads to a potential energy change in the dipole, with the dipole experiencing a force due to the non-uniform field.


An electric dipole placed with its axis inclined at an angle to the direction of a uniform electric field experiences?

It experiences a torque but no force. As the dipole is placed at an angle to the direction of a uniform electric field it experiences two opposite and equal forces which are not along the same line. This develops a torque which aligns the dipole along the field. The dipole does not experience any force as the two forces cancel each other.


Electric dipole in uniform magnetic field?

An electric dipole consists of two equal and opposite charges separated by a distance. When placed in a uniform magnetic field, the charges experience a force in opposite directions due to their opposite velocities in the field. This results in a torque acting to align the dipole along the field lines of the magnetic field.


An electric dipole is placed in a nonuniform electric filedIs there a net force on the dipole?

yes, there is a NET field .electric dipole experiences a net field .(not in uniform E.Field)


Which orientation of an electric dipole in an uniform electric field would correspond to unstable equilibrium?

So interesting query! As we keep the dipole with its dipole moment along the direction of the electric field then it will be in stable equilibrium. IF we keep the same dipole inverted ie its dipole moment opposite to the external field then the dipole will be in unstable equilibrium.


What is the work done in rotating a electric dipole in uniform electric field from parallel position to anti-parallel position?

The work done in rotating an electric dipole in a uniform electric field from parallel position to anti-parallel position is zero. This is because the torque applied to rotate the dipole is perpendicular to the direction of the electric field, so the work done is zero.


You turn an electric dipole end for end in a uniform electric field.How does the work you do depend on the initial orientation of the dipole with respect to the field?

The work done by you to turn the electric dipole end for end in a uniform electric field depends on the initial orientation of the dipole with respect to the field. If the dipole is initially oriented such that its positive and negative charges are parallel to the electric field, then no net work is done as the electric field does not do any work on the dipole as the electric field lines do not transfer any energy. On the other hand, if the dipole is initially oriented such that its positive and negative charges are perpendicular to the electric field, then work is done by you to turn the dipole as the electric field exerts a force on the charges in the dipole in opposite directions, causing them to move in opposite directions. As a result, you have to do work to move the charges and turn the dipole.


For a loop of current carrying wire in a uniform magnetic field the potential energy is a minimum if the magnetic dipole moment of the loop is?

in the same direction as the field


What is the potential energy of a point magnetic dipole of moment M placed in a uniform magnetic field B?

The potential energy of a magnetic dipole in a magnetic field is given by U = -M · B, where M is the magnetic moment and B is the magnetic field. The negative sign indicates that the potential energy decreases as the dipole aligns with the field.


Which orientation of an electric dipole in a uniform electric field would correspond to stable equilibrium?

when angle 0 b/w dipole moment vector p and electric field vector E is zero then potential energy of dipole, U=-pEcos0 =-pE and torque=pEsin0=0;which means that the electric dipole is in stable equilibrium.