answersLogoWhite

0

The torque experienced by a dipole in a uniform field is equal to the product of the magnitude of the dipole moment and the strength of the field, multiplied by the sine of the angle between the dipole moment and the field direction.

User Avatar

AnswerBot

4mo ago

What else can I help you with?

Continue Learning about Physics

What happened when an electric dipole is held in non uniform electric field?

When an electric dipole is held in a non-uniform electric field, the dipole experiences a net torque causing it to align itself in the direction of the field. The dipole will tend to orient itself with its positive end facing towards the direction of the field and its negative end facing away from it. This alignment leads to a potential energy change in the dipole, with the dipole experiencing a force due to the non-uniform field.


How does dipole motion behave in a uniform field?

In a uniform field, dipole motion aligns with the field, causing the dipole to rotate until it is parallel to the field.


Electric dipole in uniform magnetic field?

An electric dipole consists of two equal and opposite charges separated by a distance. When placed in a uniform magnetic field, the charges experience a force in opposite directions due to their opposite velocities in the field. This results in a torque acting to align the dipole along the field lines of the magnetic field.


How does a torque affect the dipole in an electric field?

A torque applied to a dipole in an electric field causes the dipole to align itself with the direction of the field. The torque will tend to rotate the dipole until it reaches the stable equilibrium position where it is aligned with the electric field.


Which orientation of an electric dipole in a uniform electric field would correspond to stable equilibrium?

when angle 0 b/w dipole moment vector p and electric field vector E is zero then potential energy of dipole, U=-pEcos0 =-pE and torque=pEsin0=0;which means that the electric dipole is in stable equilibrium.

Related Questions

An electric dipole placed with its axis inclined at an angle to the direction of a uniform electric field experiences?

It experiences a torque but no force. As the dipole is placed at an angle to the direction of a uniform electric field it experiences two opposite and equal forces which are not along the same line. This develops a torque which aligns the dipole along the field. The dipole does not experience any force as the two forces cancel each other.


What happened when an electric dipole is held in non uniform electric field?

When an electric dipole is held in a non-uniform electric field, the dipole experiences a net torque causing it to align itself in the direction of the field. The dipole will tend to orient itself with its positive end facing towards the direction of the field and its negative end facing away from it. This alignment leads to a potential energy change in the dipole, with the dipole experiencing a force due to the non-uniform field.


How does dipole motion behave in a uniform field?

In a uniform field, dipole motion aligns with the field, causing the dipole to rotate until it is parallel to the field.


Electric dipole in uniform magnetic field?

An electric dipole consists of two equal and opposite charges separated by a distance. When placed in a uniform magnetic field, the charges experience a force in opposite directions due to their opposite velocities in the field. This results in a torque acting to align the dipole along the field lines of the magnetic field.


An electric dipole is placed in a nonuniform electric filedIs there a net force on the dipole?

yes, there is a NET field .electric dipole experiences a net field .(not in uniform E.Field)


How does a torque affect the dipole in an electric field?

A torque applied to a dipole in an electric field causes the dipole to align itself with the direction of the field. The torque will tend to rotate the dipole until it reaches the stable equilibrium position where it is aligned with the electric field.


Which orientation of an electric dipole in a uniform electric field would correspond to stable equilibrium?

when angle 0 b/w dipole moment vector p and electric field vector E is zero then potential energy of dipole, U=-pEcos0 =-pE and torque=pEsin0=0;which means that the electric dipole is in stable equilibrium.


What is the work done in rotating a electric dipole in uniform electric field from parallel position to anti-parallel position?

The work done in rotating an electric dipole in a uniform electric field from parallel position to anti-parallel position is zero. This is because the torque applied to rotate the dipole is perpendicular to the direction of the electric field, so the work done is zero.


What electric field parallel or anti parallel to the electric dipole?

An electric field parallel to an electric dipole will exert a torque on the dipole, causing it to align with the field. An electric field anti-parallel to an electric dipole will also exert a torque on the dipole, causing it to rotate and align with the field in the opposite direction.


When is the torque on an electric dipole in an electric field is maximum?

The torque on an electric dipole in an electric field is maximum when the dipole is aligned parallel or anti-parallel to the electric field lines. This occurs because the torque is given by the cross product of the electric dipole moment vector and the electric field vector, and it is maximum when the angle between them is 90 degrees.


If a magnetic dipole is placed in a magnetic field the dipole is found to have both rotational and translational motion.what would you infer about the magnetic field?

If a magnetic dipole placed in a magnetic field exhibits both rotational and translational motion, it suggests that the magnetic field is not uniform. A non-uniform magnetic field will exert torque on the magnetic dipole, causing it to rotate, and may also impart a force causing translational motion. These observations can help characterize the spatial variation of the magnetic field.


Which orientation of an electric dipole in an uniform electric field would correspond to unstable equilibrium?

So interesting query! As we keep the dipole with its dipole moment along the direction of the electric field then it will be in stable equilibrium. IF we keep the same dipole inverted ie its dipole moment opposite to the external field then the dipole will be in unstable equilibrium.