answersLogoWhite

0

That would have to be when the dipole axis is perpendicular to the field.

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Physics

How does a torque affect the dipole in an electric field?

A torque applied to a dipole in an electric field causes the dipole to align itself with the direction of the field. The torque will tend to rotate the dipole until it reaches the stable equilibrium position where it is aligned with the electric field.


What electric field parallel or anti parallel to the electric dipole?

An electric field parallel to an electric dipole will exert a torque on the dipole, causing it to align with the field. An electric field anti-parallel to an electric dipole will also exert a torque on the dipole, causing it to rotate and align with the field in the opposite direction.


Which orientation of an electric dipole in a uniform electric field would correspond to stable equilibrium?

when angle 0 b/w dipole moment vector p and electric field vector E is zero then potential energy of dipole, U=-pEcos0 =-pE and torque=pEsin0=0;which means that the electric dipole is in stable equilibrium.


What happened when an electric dipole is held in non uniform electric field?

When an electric dipole is held in a non-uniform electric field, the dipole experiences a net torque causing it to align itself in the direction of the field. The dipole will tend to orient itself with its positive end facing towards the direction of the field and its negative end facing away from it. This alignment leads to a potential energy change in the dipole, with the dipole experiencing a force due to the non-uniform field.


When is a dipole in unstable equilibrium in an electric field?

A dipole is in unstable equilibrium in an electric field when the external electric field opposes the natural alignment of the dipole moment. This causes the dipole to experience a torque that rotates it away from its equilibrium position. If the force pushing the dipole away from equilibrium is stronger than any restoring forces, the equilibrium is considered unstable.

Related Questions

How does a torque affect the dipole in an electric field?

A torque applied to a dipole in an electric field causes the dipole to align itself with the direction of the field. The torque will tend to rotate the dipole until it reaches the stable equilibrium position where it is aligned with the electric field.


What electric field parallel or anti parallel to the electric dipole?

An electric field parallel to an electric dipole will exert a torque on the dipole, causing it to align with the field. An electric field anti-parallel to an electric dipole will also exert a torque on the dipole, causing it to rotate and align with the field in the opposite direction.


An electric dipole placed with its axis inclined at an angle to the direction of a uniform electric field experiences?

It experiences a torque but no force. As the dipole is placed at an angle to the direction of a uniform electric field it experiences two opposite and equal forces which are not along the same line. This develops a torque which aligns the dipole along the field. The dipole does not experience any force as the two forces cancel each other.


An electric dipole is placed in a nonuniform electric filedIs there a net force on the dipole?

yes, there is a NET field .electric dipole experiences a net field .(not in uniform E.Field)


Which orientation of an electric dipole in a uniform electric field would correspond to stable equilibrium?

when angle 0 b/w dipole moment vector p and electric field vector E is zero then potential energy of dipole, U=-pEcos0 =-pE and torque=pEsin0=0;which means that the electric dipole is in stable equilibrium.


What happened when an electric dipole is held in non uniform electric field?

When an electric dipole is held in a non-uniform electric field, the dipole experiences a net torque causing it to align itself in the direction of the field. The dipole will tend to orient itself with its positive end facing towards the direction of the field and its negative end facing away from it. This alignment leads to a potential energy change in the dipole, with the dipole experiencing a force due to the non-uniform field.


When is a dipole in unstable equilibrium in an electric field?

A dipole is in unstable equilibrium in an electric field when the external electric field opposes the natural alignment of the dipole moment. This causes the dipole to experience a torque that rotates it away from its equilibrium position. If the force pushing the dipole away from equilibrium is stronger than any restoring forces, the equilibrium is considered unstable.


You turn an electric dipole end for end in a uniform electric field.How does the work you do depend on the initial orientation of the dipole with respect to the field?

The work done by you to turn the electric dipole end for end in a uniform electric field depends on the initial orientation of the dipole with respect to the field. If the dipole is initially oriented such that its positive and negative charges are parallel to the electric field, then no net work is done as the electric field does not do any work on the dipole as the electric field lines do not transfer any energy. On the other hand, if the dipole is initially oriented such that its positive and negative charges are perpendicular to the electric field, then work is done by you to turn the dipole as the electric field exerts a force on the charges in the dipole in opposite directions, causing them to move in opposite directions. As a result, you have to do work to move the charges and turn the dipole.


What is the work done in rotating a electric dipole in uniform electric field from parallel position to anti-parallel position?

The work done in rotating an electric dipole in a uniform electric field from parallel position to anti-parallel position is zero. This is because the torque applied to rotate the dipole is perpendicular to the direction of the electric field, so the work done is zero.


What is the angle between dipole moment and electric field in a electric dipole?

The angle between the dipole moment and the electric field in an electric dipole is 0 degrees or 180 degrees. This means the dipole moment is either aligned with or opposite to the electric field direction.


How electric field is equal to force by dipole moment?

The electric field produced by a dipole at a distance is given by the formula E = 2kP/r^3, where k is the electrostatic constant, P is the dipole moment, and r is the distance from the dipole. This electric field exerts a force on a test charge q placed in the field, given by F = qE. Therefore, the force on a charge due to a dipole moment is directly proportional to the dipole moment and the charge, according to these equations.


What is the torque experienced by a dipole in a uniform field?

The torque experienced by a dipole in a uniform field is equal to the product of the magnitude of the dipole moment and the strength of the field, multiplied by the sine of the angle between the dipole moment and the field direction.