molec weight is 151g/mol.
1.11 moles x 151g/mol is 167.61g
Moles is mass / molecular mass
To find the number of moles of K2SO4 in 15.0 grams, first calculate the molar mass of K2SO4 (K: 39.10 g/mol, S: 32.07 g/mol, O: 16.00 g/mol). Molar mass of K2SO4 = 2(39.10) + 32.07 + 4(16.00) = 174.26 g/mol Now, divide the given mass by the molar mass to find the number of moles: 15.0 g / 174.26 g/mol = 0.086 moles of K2SO4
For this you need the atomic (molecular) mass of CO2. Take the number of grams and divide it by the atomic mass. Multiply by one mole for units to cancel. CO2=44.0 grams454 grams CO2 / (44.0 grams) = 10.3 moles CO2
To find the number of moles in 1.1 grams of FeCl3, you'll first determine the molar mass of FeCl3 (55.85 + 35.45*3) = 162.31 g/mol. Then, divide the given mass (1.1g) by the molar mass to get the number of moles (1.1g / 162.31g/mol ≈ 0.007 moles of FeCl3).
To find the number of moles of CaBr2 in 5.0 grams, you first need to calculate the molar mass of CaBr2. The molar mass of CaBr2 is 200.8 g/mol. Divide the given mass by the molar mass to find the number of moles: 5.0 g / 200.8 g/mol = 0.025 moles of CaBr2. Since there is one mole of CaBr2 for every two moles of CaBr, you have half of that amount in moles of CaBr: 0.025 moles / 2 = 0.0125 moles of CaBr.
Using the formula number of moles = mass divided by molar massso mass = number of moles X molar massFind molar mass by adding up the masses of all the atoms in your substance.A good way to remember this is as the formula g/mw = moles, and the mnemonic for this is"Mine workers (mw= molecular weight) under ground (grams of compound you are dealingwith = Moles!
4,12 grams aluminum sulfate is equivalent to 0,012 moles (for the anhydrous salt).
To calculate the mass in grams of sodium sulfate, we need to know the number of moles. Once we have the number of moles, we can multiply it by the molar mass to find the mass in grams. For example, if we have 2 moles of sodium sulfate, the mass would be 2 moles * 141.98 grams/mole = 283.96 grams.
To convert grams of aluminum sulfate to moles, you first need to determine the molar mass of aluminum sulfate (Al2(SO4)3), which is approximately 342.15 g/mol. Then, divide the given mass by the molar mass to obtain the number of moles. In this case, 6.7 grams of aluminum sulfate is approximately 0.02 moles.
25,3 moles of potassium sulfate hva a mass of 4,4409 kg.
4,0 moles of the manganese contain 219,75 g.
4,0 moles of the manganese contain 219,75 g.
To find the mass of 2.25 moles of manganese sulfide (MnS2), you need to calculate the molar mass of MnS2 which is 118.87 g/mol. Then, you can multiply the molar mass by the number of moles to get the mass: 2.25 moles × 118.87 g/mol = 267.46 grams. So, the mass of 2.25 moles of manganese sulfide is 267.46 grams.
The molar mass of magnesium sulfate (MgSO₄) is approximately 120.37 g/mol. To find the mass of 0.3 moles, you multiply the number of moles by the molar mass: 0.3 moles × 120.37 g/mol = 36.11 grams. Therefore, the mass of 0.3 moles of magnesium sulfate is about 36.11 grams.
3.6 moles N2SO4 (142.05 grams/1 mole Na2SO4) = 511.38 grams Na2SO4 ==================( you do significant figures )
To find the mass of 1.15 mol of strontium sulfate, you first need to calculate the molar mass of strontium sulfate, which is 183.68 g/mol. Then, multiply the molar mass by the number of moles: 1.15 mol * 183.68 g/mol = 211.22 grams. Therefore, the mass of 1.15 mol of strontium sulfate is 211.22 grams.
To find the mass of 0.25 moles of aluminum sulfate, you need to know the molar mass of aluminum sulfate. The molar mass of aluminum sulfate (Al2(SO4)3) is approximately 342.15 g/mol. Therefore, the mass of 0.25 moles of aluminum sulfate would be around 85.54 grams.
Amount of sodium sulfate required = 0.683 x 350/100 = 0.239The formula mass of sodium sulfate, Na2SO4 is 2(23.0) + 32.1 + 4(16.0) = 142.1 Therefore mass of sodium sulfate required = 0.239 x 142.1 = 34.0g Approximately 34 grams of sodium sulfate would be needed.