When a polonium-216 nucleus undergoes alpha decay, it will lose an alpha particle, which is made up of 2 protons and 2 neutrons. This means that polonium-216, which has an Atomic Mass of 216 and an atomic number of 84, will become the element with the atomic number of 82 (84 minus 2), and will have an atomic mass of 212 (216 minus 4). Lead has an atomic number of 82. So, this is how polonium-216 becomes an isotope of lead when it emits an alpha particle.
Lead-210 decays by alpha or beta decay. The equation for the alpha decay of 210Pb is: 82210Pb --> 80206Hg + 24He representing the alpha particle as a helium nucleus. The equation for the beta decay of 210Pb is: 82210Pb --> 83210Bi + -10e where the -10e is an electron.
The equation for the alpha decay of 233Pu:94233Pu --> 92229U + 24He2+where the alpha particle is represented as a helium nucleus.Note that 233Pu decays by alpha decay with a probability of only 0.12%. The other 99.88% is Beta+ decay.
The equation for alpha decay of mercury-201 is: ^201Hg -> ^197Au + ^4He This means that mercury-201 decays into gold-197 and helium-4 by emitting an alpha particle.
The balanced equation for the alpha decay of thorium-229, Th-229, is: Th-229 -> Ra-225 + He-4 This equation shows that a thorium-229 nucleus undergoes alpha decay to form a radium-225 nucleus and a helium-4 particle.
Americium-243 might undergo alpha decay to become neptunium-239, and here is that equation: 95243Am => 93239Np + 24He++ The americium-243 has undergone transmutation to become neptunium-239, and the alpha particle, which is a helium-4 nucleus, can be seen on the tail end of the equation.
The equation for the alpha decay of 226Ra: 88226Ra --> 86222Rn + 24He The alpha particle is represented as a helium (He) nucleus.
The nuclear equation for the alpha decay of 242Pu is: ^24294Pu -> ^23892U + ^4He2 This equation shows that the nucleus of 242Pu decays into a nucleus of 238U and an alpha particle, which is a helium-4 nucleus.
Lead-210 decays by alpha or beta decay. The equation for the alpha decay of 210Pb is: 82210Pb --> 80206Hg + 24He representing the alpha particle as a helium nucleus. The equation for the beta decay of 210Pb is: 82210Pb --> 83210Bi + -10e where the -10e is an electron.
Uranium-239 does NOT decay by alpha decay, it decays only by beta and gammadecay.
The equation for the alpha decay of 213At: 85213At --> 83209Bi + 24He where the alpha particle is represented as a helium nucleus.
The equation for the alpha decay of 265Bh is:107265Bh --> 105261Db + 24He where the 24He is an alpha particle or helium nucleus.
The equation for the alpha decay of 222Rn is: 86222Rn --> 84218Po + 24He Where He represents the alpha particle, which can also be viewed as a Helium nucleus.
parent element
The equation for the alpha decay of 233Pu:94233Pu --> 92229U + 24He2+where the alpha particle is represented as a helium nucleus.Note that 233Pu decays by alpha decay with a probability of only 0.12%. The other 99.88% is Beta+ decay.
There is no equation. Calcium-42 is stable and does not decay. Calcium is also much to light for alpha decay, which requires elements heavier than nickel, so no isotope of calcium undergoes alpha decay.
The balanced nuclear equation for the alpha decay of thorium-230 is: ^230Th → ^226Ra + ^4He
The equation for alpha decay of mercury-201 is: ^201Hg -> ^197Au + ^4He This means that mercury-201 decays into gold-197 and helium-4 by emitting an alpha particle.