Ignoring the effects of air resistance, the velocity of any object dropped
near the surface of the Earth is 29.42 meters (96.53 feet) per second,
directed downward, after it has fallen 3 meters.
If you're working with situations and asking questions like this one, then
you're supposed to know by now that the mass or weight of the object
makes no difference. If you can eliminate air resistance, then the answer
is the same for a feather, a Bowling ball, and a battleship.
Ignoring any effects due to air resistance, the speed of the stone is zero at the instant it's dropped, and increases steadily to 78.98 meters per second when it hits the ground. The velocity is directed downward throughout the experiment.
If it was thrown horizontally or dropped, and hit the ground 3.03 seconds later, then it hit the ground moving at a speed of 29.694 meters (97.42-ft) per second. If it was tossed at any angle not horizontal, and hit the ground 3.03 seconds later, we need to know the direction it was launched, in order to calculate the speed with which it hit the ground.
Still accelerating til it hits earth. ====================================== The height from which she dropped the ball is irrelevant. In any case, the ball was most likely moving at the greatest speed just as it hit the ground. The answer to the question is: zero.
In the case of an object thrown, batted, teed off, or dropped, its acceleration at the instant of its maximum velocity is 9.8 meters per second2 downward.
The velocity of the penny as it hits the ground can be calculated using the equation: velocity = distance/time. Assuming the penny falls vertically, if we take the distance it falls to be 9.8 m/s^2 x (4.5 s)^2 / 2 ≈ 99.22 meters and the time is 4.5 seconds, the velocity would be 99.22 meters / 4.5 seconds = 22.04 m/s.
5968
If the ball was dropped from a roof and hit the ground 3.03 seconds later, then when it hit the groundits velocity was 29.694 meters (97.42 feet) per second (rounded) downward.
Ignoring any effects due to air resistance, the speed of the stone is zero at the instant it's dropped, and increases steadily to 78.98 meters per second when it hits the ground. The velocity is directed downward throughout the experiment.
If it was thrown horizontally or dropped, and hit the ground 3.03 seconds later, then it hit the ground moving at a speed of 29.694 meters (97.42-ft) per second. If it was tossed at any angle not horizontal, and hit the ground 3.03 seconds later, we need to know the direction it was launched, in order to calculate the speed with which it hit the ground.
Here are two different methods to solve this kind of problem. 1) Use one of the formulae for constant acceleration. In this case, vf2 = vi2 + 2as, where vf is the final velocity, vi is the initial velocity (zero in this case), a is the acceleration (9.8 meters / second2), and s is the distance. 2) Do an energy calculation, as follows: Calculate the potential energy at a height of 6 meters, with the formula PE = mgh. Since we can assume that the entire potential energy gets converted to kinetic energy just before the ball hits the ground, solve for velocity, in the kinetic energy formula.
Still accelerating til it hits earth. ====================================== The height from which she dropped the ball is irrelevant. In any case, the ball was most likely moving at the greatest speed just as it hit the ground. The answer to the question is: zero.
The building is h=.5 gt^2 meters tall; that is = .5x9.8 x25 =122.5 meters.
In the case of an object thrown, batted, teed off, or dropped, its acceleration at the instant of its maximum velocity is 9.8 meters per second2 downward.
176.4 meters
No because you touch yourself at night.|_ 4 VV |_Just kidding. It does!Psyche!Actually, it does not because when your mother dropped you from 2 meters above the ground, you fell at a negative VELOCITY. Speed does not specify direction, and therefore can not be negative.
In two seconds of fall, the speed increases 19.6 meters (64.4 feet) per second. The magnitude of velocity increases by that amount, while the direction of velocity doesn't change.
The velocity of the penny as it hits the ground can be calculated using the equation: velocity = distance/time. Assuming the penny falls vertically, if we take the distance it falls to be 9.8 m/s^2 x (4.5 s)^2 / 2 ≈ 99.22 meters and the time is 4.5 seconds, the velocity would be 99.22 meters / 4.5 seconds = 22.04 m/s.