the reason for 0.3V as barrier potential in Ge is:-
Electrons near the junction drift into the P region and recombine with holes. At the junction, the P-side has a layer of negative charges or negative ions (since p-type material is electrically nuetral addition of an electron makes it a negative ion). At the junction, the N-side has given up electrons thus creating holes i.e. it has positive charges or positive ions.This ion build up creates an area that is depleted of any conduction electrons or holes i.e. it has positive charges or positive ions cancelled out by negative charges or negative ions This ion build up creates an area that is depleted of any conduction electrons or holes. This represents a potential difference of 0v to 0.3v volts Ge diodes Semiconductor devices are controlled by controlling the depletion region of the device. The potential difference is called the barrier potential.
It's basically what makes the semiconductor work, so its a really good question.
The silicon diode (unless its a Schottky diode) conducts at approximately 0.6 volts. The germanium diode, however, conducts at a much lower voltage, typically 0.2 volts. This means that the germanium diode is better at small signal rectification applications, such as AM radio detectors, allowing a smaller tuner tank circuit.
The knee voltage for silicon is approximately 0.7V, while for germanium it is around 0.3V. The knee voltage is the voltage at which a diode starts conducting significantly.
A silicon diode has a voltage drop of approximately 0.7V, while a germanium diode has a voltage drop of approximately 0.3V. Though germanium diodes are better in the area of forward voltage drop, silicon diodes are cheaper to produce and have higher breakdown voltages and current capabilities.
The knee voltage for germanium is around 0.2V because this is the point at which the diode starts conducting current in a forward bias condition. Below this voltage, the diode remains non-conductive. This specific value is determined by the band gap energy of germanium.
A germanium diode has a lower forward voltage drop compared to a silicon diode, typically around 0.3V for germanium and 0.7V for silicon. Germanium diodes also have a higher reverse current leakage compared to silicon diodes.
There is no exact substitute for a germanium diode, except another germanium diode. However if the only concern is to get a lower forward voltage drop than that of a silicon diode (0.7V), then a schottky barrier diode may be a suitable replacement as its forward voltage drop (<0.1V) is even lower than that of a germanium diode (0.2V).
A Germanium diode has a much lower breakdown voltage than a silicone diode.
The silicon diode (unless its a Schottky diode) conducts at approximately 0.6 volts. The germanium diode, however, conducts at a much lower voltage, typically 0.2 volts. This means that the germanium diode is better at small signal rectification applications, such as AM radio detectors, allowing a smaller tuner tank circuit.
The knee voltage for silicon is approximately 0.7V, while for germanium it is around 0.3V. The knee voltage is the voltage at which a diode starts conducting significantly.
About 0.2V
A silicon diode has a voltage drop of approximately 0.7V, while a germanium diode has a voltage drop of approximately 0.3V. Though germanium diodes are better in the area of forward voltage drop, silicon diodes are cheaper to produce and have higher breakdown voltages and current capabilities.
The knee voltage for germanium is around 0.2V because this is the point at which the diode starts conducting current in a forward bias condition. Below this voltage, the diode remains non-conductive. This specific value is determined by the band gap energy of germanium.
A germanium diode has a lower forward voltage drop compared to a silicon diode, typically around 0.3V for germanium and 0.7V for silicon. Germanium diodes also have a higher reverse current leakage compared to silicon diodes.
To forward bias a germanium diode you need to reach between 0.2 and 0.3 V between anode (+) and cathode (-). Once this voltage is reached, the diode will conduct. Make sure you have a resistor to limit the forward current to a safe (for the diode, that is) value.
The barrier voltage of a diode is 0.7v for silicon and 0.3 for germanium. after this voltage is reached the current starts increasing rapidly... till this voltage is reached the current increases in very small steps...
Silicon = 0.7v : Germanium = 0.3v
Silicon (Si) diodes are more commonly used than germanium (Ge) diodes. Silicon diodes are preferred for most applications due to their higher temperature tolerance, lower leakage current, and greater availability. They are commonly used in rectifiers, signal processing, and various electronic circuits. Germanium diodes, while having some advantages in specific applications (such as lower forward voltage drop), are less common in modern electronics.