because in tangent galvanometer earth magnetic field and magnetic field of magnet inside galvanometer are perpendicular to each other
A Tangent Galvanometer is used to measure small electric currents in a circuit. It works on the principle of the tangent law of magnetism, where the magnetic needle aligns with the magnetic field produced by the current passing through a coil. This alignment allows for the measurement of the current based on the angle of deflection of the needle.
by using the formula b=μn/2A(I/TAN Ɵ)....where μ=4πx10 pow(-7)n=number f turns of the coilA=radius of the coil(m)I=current flowing through the coil(A)Ɵ=angle of deflection in the tangent galvanometer.
A galvanometer calibrated to read current is called an ammeter. It is used to measure the flow of electric current in a circuit.
By attaching a resistance in parallel connection with the galvanometer. Or when a low resistor connected in parallel with galvanometer ,the galvanometer is converted in ammeter. and the resistor is called shunt resistance.
The galvanometer is oriented so that the plane of the coil is vertical and aligned along parallel to the horizontal component He of the Earth's magnetic field (i.e. parallel to the local "magnetic meridian"). When an electrical current flow through the galvanometer coil, a second magnetic field H is created. At the center of the coil, where the compass needle is located, the coil's field is perpendicular to the plane of the coil. These two perpendicular magnetic fields add vertically, and the compass needle points along the direction of their resultant He + H. The current in the coil causes the compass needle to rotate by an angle\ \theta.
The term "reduction factor" in a tangent galvanometer refers to the ratio of the magnetic field strength produced by the coil of the galvanometer to the Earth's magnetic field strength. It quantifies how much the deflection of the galvanometer's needle is reduced due to the presence of the magnetic field generated by the coil compared to the Earth's magnetic field. This factor is essential for accurately measuring current in the circuit by relating the tangent of the angle of deflection to the current flowing through the coil.
it is the current measured in amphere..
to detect the sudden change in current.
reduction factor is used to find earth's magnetic field and compare galvanometer constants
IG=Betanx. in this G is G.constant, I is current, Be is Megnetic field of earth, OK? or anything else?
A tangent galvanometer is set into the magnetic meridian to ensure that its plane is aligned with the Earth's magnetic field. This alignment allows for accurate measurement of the magnetic field produced by an electric current flowing through the coil of the galvanometer. When the galvanometer's coil is positioned in this way, the angle of deflection of the needle directly corresponds to the tangent of the ratio of the magnetic field due to the current to the Earth's magnetic field, facilitating precise calculations.
A spirit level in a tangent galvanometer is used to ensure that the device is perfectly horizontal. This alignment is crucial for accurate measurements of the magnetic field and current, as any tilt can introduce errors in the readings. By leveling the galvanometer, the magnetic needle can respond correctly to the magnetic field produced by the current flowing through the coil. A proper setup ensures reliable and consistent results during experiments.
A Tangent Galvanometer is used to measure small electric currents in a circuit. It works on the principle of the tangent law of magnetism, where the magnetic needle aligns with the magnetic field produced by the current passing through a coil. This alignment allows for the measurement of the current based on the angle of deflection of the needle.
The reduction factor of a tangent galvanometer is the ratio of the tangent of the angle of deflection produced by a given current to the actual value of that current. It is used to calibrate the instrument so that the deflection angle can be directly related to the current flowing through it.
by using the formula b=μn/2A(I/TAN Ɵ)....where μ=4πx10 pow(-7)n=number f turns of the coilA=radius of the coil(m)I=current flowing through the coil(A)Ɵ=angle of deflection in the tangent galvanometer.
We find it by varying the current flowing through it and by measuring the deflection respectively and then we use the formula k=I/tan(theta)
1) to calculate coeficient of error 2) to calculate deviation between the readings to infere a behaviour