Is googol and googolplex the same thing?
No. A Googol is 1.0 × 10100 = 1 followed by 100 zeroes A Googolplex is 1.0 × 10Googol = 1 followed by Googol zeroes
An imaginary number is a number that cannot exist. An example of an imaginary number would be: the square root of negative nine, or any negative number.
When I try to think of any two of the same numbers that would multiply together to be negative nine, all I can think of is 3 or -3. when I square both of those numbers, I get the number 9, not -9. When I multiply two negatives together, I get a positive number, therefore there is no possible way to get the square root of -9, or any negative number.
How many numbers are after the decimal point in pi?
Generally pi is shown as 3.14, but realistically pi continues on forever.
http://en.wikipedia.org/wiki/Pi
What is the common factors of 144?
The factors of 144 are 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144. For them to be common, they must be compared to another set of factors.
Pi is in fact a never ending number since it's decimal part goes on for ever and has no specific pattern. Ha!
Mathematical symbol that was introduced in 1525?
The radical symbol for square root, without the vinculum above the radicand, was introduced in 1525. The first author to use it was Christoff Rudolff.
Pi is not a natural number. Natural numbers are just the regular set of numbers used for counting (1, 2, 3, 4, ...). Pi, being not even a whole number, is not natural.
What is a list of composite numbers?
It is not possible to list either all composite or all prime numbers as there are an infinite amount of both.
See the related question for a list of primes. Any number over one that's not on the lists linked there are composites.
4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 111, 112, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 129, 130, 132, 133, 134, 135, 136, 138, 140, 141, 142, 143, 144, 145, 146, 147, 148, 150, 152, 153, 154, 155, 156, 158, 159, 160, 161, 162, 164, 165, 166, 168, 169, 170, 171, 172, 174, 175, 176, 177, 178, 180, 182, 183, 184, 185, 186, 187, 188, 189, 190, 192, 194, 195, 196, 198, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 224, 225, 226, 228, 230, 231, 232, 234, 235, 236, 237, 238, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 252, 253, 254, 255, 256, 258, 259, 260, 261, 262, 264, 265, 266, 267, 268, 270, 272, 273, 274, 275, 276, 278, 279, 280, 282, 284, 285, 286, 287, 288, 289, 290, 291, 292, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 308, 309, 310, 312, 314, 315, 316, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 332, 333, 334, 335, 336, 338, 339, 340, 341, 342, 343, 344, 345, 346, 348, 350, 351, 352, 354, 355, 356, 357, 358, 360, 361, 362, 363, 364, 365, 366, 368, 369, 370, 371, 372, 374, 375, 376, 377, 378, 380, 381, 382, 384, 385, 386, 387, 388, 390, 391, 392, 393, 394, 395, 396, 398, 399, 400, 402, 403, 404, 405, 406, 407, 408, 410, 411, 412, 413, 414, 415, 416, 417, 418, 420, 422, 423, 424, 425, 426, 427, 428, 429, 430, 432, 434, 435, 436, 437, 438, 440, 441, 442, 444, 445, 446, 447, 448, 450, 451, 452, 453, 454, 455, 456, 458, 459, 460, 462, 464, 465, 466, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 480, 481, 482, 483, 484, 485, 486, 488, 489, 490, 492, 493, 494, 495, 496, 497, 498, 500, 501, 502, 504, 505, 506, 507, 508, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 522, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 542, 543, 544, 545, 546, 548, 549, 550, 551, 552, 553, 554, 555, 556, 558, 559, 560, 561, 562, 564, 565, 566, 567, 568, 570, 572, 573, 574, 575, 576, 578, 579, 580, 581, 582, 583, 584, 585, 586, 588, 589, 590, 591, 592, 594, 595, 596, 597, 598, 600, 602, 603, 604, 605, 606, 608, 609, 610, 611, 612, 614, 615, 616, 618, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 632, 633, 634, 635, 636, 637, 638, 639, 640, 642, 644, 645, 646, 648, 649, 650, 651, 652, 654, 655, 656, 657, 658, 660, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 674, 675, 676, 678, 679, 680, 681, 682, 684, 685, 686, 687, 688, 689, 690, 692, 693, 694, 695, 696, 697, 698, 699, 700, 702, 703, 704, 705, 706, 707, 708, 710, 711, 712, 713, 714, 715, 716, 717, 718, 720, 721, 722, 723, 724, 725, 726, 728, 729, 730, 731, 732, 734, 735, 736, 737, 738, 740, 741, 742, 744, 745, 746, 747, 748, 749, 750, 752, 753, 754, 755, 756, 758, 759, 760, 762, 763, 764, 765, 766, 767, 768, 770, 771, 772, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 788, 789, 790, 791, 792, 793, 794, 795, 796, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 810, 812, 813, 814, 815, 816, 817, 818, 819, 820, 822, 824, 825, 826, 828, 830, 831, 832, 833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 854, 855, 856, 858, 860, 861, 862, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 878, 879, 880, 882, 884, 885, 886, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 908, 909, 910, 912, 913, 914, 915, 916, 917, 918, 920, 921, 922, 923, 924, 925, 926, 927, 928, 930, 931, 932, 933, 934, 935, 936, 938, 939, 940, 942, 943, 944, 945, 946, 948, 949, 950, 951, 952, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 968, 969, 970, 972, 973, 974, 975, 976, 978, 979, 980, 981, 982, 984, 985, 986, 987, 988, 989, 990, 992, 993, 994, 995, 996, 998, 999 and 1000 are composite.
How many zero's are in a Google?
99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
How many digits are in the number Pi?
As many as you like; pi is an irrational number. That means that there are no two whole numbers that you can make into a fraction exactly equal to pi. It also means that if you start to calculate pi as a decimal it never ends and never recurrs. It just goes on forever.
A few years ago two Japanese people calculated pi to eight million places of decimals, which they then published in a book. It just never ends.
* * * * *
Update: in October 2011, pi to 10 trillion (and 50) digits was published. See link.
How do you find out the number of imaginary zeros in a polynomial?
Descartes' rule of signs (see related link) can help you determine the maximum number of real roots. If the polynomial is odd powered, then there will be at least one real root. Any even powered polynomial can be factored into a bunch of quadratics [though they may not be rational or even pretty], and any odd-powered polynomial can be factored into a bunch of quadratics and one linear (this one would have the real root). So the quadratics may have pairs of real or complex roots (having an imaginary component).
To clarify, when I say complex, I'm referring to the fact that there will be an imaginary component to the root, because actually the real numbers is a subset of the set of complex numbers.
The order of the polynomial will tell you how many roots it will have. If you can graph the polynomial, then you can see if it crosses the x axis. If it is a 5th order polynomial, and crosses the x axis 3 times, then there are 3 real roots (the other two roots are complex).
The golden ratio is irrational, so the umber iself cannot be written out completely. It is approximately equal to 1.618033989:1. It can be represented algebraicly through the equation (1+SQRT(5))/2 or trigonometrically by the equation 1/(2cos(72)) in degrees.
What is a shell script to print Avogadro's number?
#!/bin/sh
echo "6.0221415 * 10²³"
#!/bin/sh
echo "6.0221415 * 10 ^ 23"
How many zeroes are in Googol?
There are One Hundred Zeroes in a Googol.
1 googol = 1 × 10100
A One followed by 100 zeroes.
A googol is 1 X 10100, so it has 100 zeroes.
What is the exact number for pi?
pi does not exist because pie is round so tell your teacher that pi does not exist