The Auxiliary Carry (AC) flag in the 8085 indicates a carry out of the low order 4 bits of an operation, more specifically that the low order 4 bits are greater than 9 (10012). The AC flag can thus be used to facilitate decimal arithmetic.
there are 5 flags of intel 8085 are: Carry flag(CY), parity flag(P), Auxiliary Carry flag(AC), Zero Flag(Z), Sign flag(S).
The Program Status Word (PSW) for the 8085 and 8086 microprocessors consists of various flags that indicate the status of operations. In the 8085, the flags include the Sign Flag (S), Zero Flag (Z), Auxiliary Carry Flag (AC), Parity Flag (P), and Carry Flag (CY). For example, if an operation results in a negative value, the Sign Flag is set, while if the result is zero, the Zero Flag is set. In 8086, the PSW includes similar flags but adds the Overflow Flag (OF), which indicates an overflow in signed arithmetic operations.
INR affect the carry flag.
In the 8085 microprocessor, DAD (Double Add) is an instruction that adds the contents of a specified 16-bit register pair (HL, BC, or DE) to the contents of the accumulator (A) and stores the result back in the 16-bit register pair. The flags affected by the DAD instruction are the Carry flag (CY) and the Parity flag (P). The Zero flag (Z) and Sign flag (S) remain unaffected. Additionally, the Auxiliary Carry flag (AC) is also not affected by this operation.
In the 8085 microprocessor, the status flags are specific bits in the flag register that indicate the outcome of arithmetic and logical operations. There are five main flags: the Sign Flag (S), Zero Flag (Z), Auxiliary Carry Flag (AC), Parity Flag (P), and Carry Flag (CY). The Sign Flag indicates the sign of the result, the Zero Flag indicates if the result is zero, the Auxiliary Carry Flag is used for BCD operations, the Parity Flag indicates if the number of set bits is even or odd, and the Carry Flag indicates an overflow in arithmetic operations. These flags are essential for decision-making in program execution and control flow.
In the 8085 microprocessor, the Arithmetic Logic Unit (ALU) affects five flags in the status register: Sign Flag (S), Zero Flag (Z), Auxiliary Carry Flag (AC), Parity Flag (P), and Carry Flag (CY). The Sign Flag indicates the sign of the result; the Zero Flag is set if the result is zero; the Auxiliary Carry Flag is used for BCD operations; the Parity Flag indicates whether the number of 1s in the result is even or odd; and the Carry Flag indicates an overflow in arithmetic operations. These flags help in decision-making for subsequent operations and control flow in programs.
Carry
Processor status word ( PSW ) in the case of 8085 refers to the collection of the values of the flag register and accumulator. It is used with the command push: PUSH PSW With this command, the proccessor saves the value of accumulator (A) and the values of the flag bits to the stack.
The 8085 microprocessor has 5 flags: 1. Zero flag: The zero flag is set, when the ALU operation results a zero . 2. Carry flag: If an arithmetic operations results in a carry, this flag is set. 3. Parity flag: This flag is set, when an arithmetic or logical operation results in a data, which has even number of 1s. If otherwise, it is reset. 4. Sign flag: After the execution of an arithmetic or logic operations, if D7 bit of the accumulator is 1, it indicates a negative number and this flag is set. If otherwise, it is reset. 5. Auxiliary Carry flag: used for BCD Operations, During the BCD operations, if D3 bit producing the carry then the AC bit set as1, otherwise the bit is 0. 6. Carry Flag: when a carry is generated by digit D7, then the carry flag set as 1, otherwise the bit will be 0.
Flags are microprocessor dependent. ie flags are different for different microprocessors. Flag represents the status ( & Type) of the operation performed. Ex: In terms of 8085 we have 5 flags : Zero, Carry, Ac Carry, Parity, Sign Flag register is of 8 bits in this case. These flags can also be used for logic implementation.
yes
The flags are testable conditions that are set after many arithmetic or logical instructions to indicate something about the result of the result. For instance, the Z flag means the result is zero, the N flag means it is negative, the O flag means a signed overflow occurred, the C flag means an unsigned overflow occurred, and the P flag means an even number of bits is set in the result. You can use the various flag testable jump instructions, such as JZ or JNZ to test the flag after performing an operation that sets or resets the flag.