The Earth has two poles, the north pole and the south pole that behave like giant magnets. The rock on the ocean floor contains iron. The rock began as molten material that cooled and hardened. As the rock cooled, the iron bits inside lined up in the direction of Earth's magnetic poles. This locked the iron bits in place, giving the rocks a permanent "magnetic memory". The stripes are significant because of the "magnetic memory" giving us an idea of what occurred when sea-floor spreading took place.
Magnetic minerals on the ocean floor.
Movement of the ocean crust
Is there magnetic stripe son the ocean floor are places where oceanic crust sink back to the mantle
The history of reversals can be observed on the ocean floor through magnetic striping. When new oceanic crust is formed at mid-ocean ridges, magnetic minerals align with the Earth's magnetic field. Over time, as the Earth's magnetic field reverses, these minerals record the reversals in alternating magnetic stripes on the ocean floor. This provides evidence for the history of reversals.
the magnetic pattern on the sea floor
Evidence that Earth's magnetic field changes can be found in the alignment of magnetic minerals in rocks on the ocean floor. As magma solidifies into new rock, the magnetic minerals within it align with the current magnetic field direction. By studying the alignment of these minerals in rocks of different ages along the ocean floor, scientists can track changes in the Earth's magnetic field over time.
Movement of the ocean crust
True. Bands of magnetic material in the sea floor that have opposite poles or exhibit magnetic reversal provide evidence for sea floor spreading. This is because as new oceanic crust forms at mid-ocean ridges, Earth's magnetic field periodically reverses, creating magnetic stripes on the ocean floor that align with the direction of the magnetic field at that time.
Magnetic striping on the ocean floor is caused by the movement of tectonic plates. As new oceanic crust is formed at mid-ocean ridges, Earth's magnetic field causes iron-rich minerals in the crust to align and record the direction of the magnetic field at that time. This results in alternating patterns of magnetic polarity stripes on the ocean floor.
Strips of ocean-floor basalt record the polarity of earth's magnetic field at the time the rock formed. These strips form a pattern that is the same on both sides of the mid-ocean ridge. the pattern shows that ocean floor forms along mid-ocean ridges and then moves away from the ridge.
It represents the pattern of the magnetic strip.