pyruvate
The enzyme that converts pyruvate into acetyl-CoA is pyruvate dehydrogenase. This multienzyme complex is responsible for catalyzing the conversion of pyruvate into acetyl-CoA, which is a key step in the metabolism of carbohydrates to produce energy.
The steps of glycolysis that are irreversible are the conversion of glucose to glucose-6-phosphate by hexokinase, the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate by phosphofructokinase-1, and the conversion of phosphoenolpyruvate to pyruvate by pyruvate kinase.
The steps in glycolysis that are irreversible are the conversion of glucose to glucose-6-phosphate by hexokinase, the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate by phosphofructokinase-1, and the conversion of phosphoenolpyruvate to pyruvate by pyruvate kinase.
pyruvate carboxylase and phosphoenolpyruvate carboxykinase (PEPCK)
This reaction is a phosphorylation reaction where phosphoenolpyruvate transfers a phosphate group to ADP to form pyruvate and ATP. It is catalyzed by the enzyme pyruvate kinase, an important step in glycolysis for ATP production.
In the anabolism of glucose, pyruvate is initially converted into phosphoenolpyruvate (PEP) through the enzyme pyruvate carboxylase. PEP is an important intermediate in the gluconeogenesis pathway, which synthesizes glucose from non-carbohydrate precursors.
The irreversible reactions in glycolysis are catalyzed by the enzymes hexokinase, phosphofructokinase, and pyruvate kinase. These reactions involve the conversion of glucose to glucose-6-phosphate, fructose-6-phosphate to fructose-1,6-bisphosphate, and phosphoenolpyruvate to pyruvate, respectively.
Pyruvate kinase is primarily found in the liver and red blood cells, but it is also present in muscle tissue. In muscle cells, it plays a crucial role in glycolysis, facilitating the conversion of phosphoenolpyruvate to pyruvate while generating ATP. However, the isoforms of pyruvate kinase in muscle (PKM) are distinct from those in other tissues, reflecting the specific metabolic needs of muscle cells.
Enzymes such as pyruvate dehydrogenase, isocitrate dehydrogenase, and alpha-ketoglutarate dehydrogenase are involved in the production of CO2 in cellular metabolism through the tricarboxylic acid cycle (TCA cycle). These enzymes catalyze reactions that release CO2 as a byproduct of the conversion of carbon compounds to generate ATP.
....conversion of glucose to pyruvate.
Pyruvate can be converted to PEP by a combination of reactions that use energy from two different types of nucleotide triphosphate.
The most energetically favorable reactions in glycolysis are the phosphorylation of glucose to glucose-6-phosphate (catalyzed by hexokinase), the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate (catalyzed by phosphofructokinase), and the conversion of phosphoenolpyruvate to pyruvate (catalyzed by pyruvate kinase). These reactions are characterized by large negative changes in free energy, making them essentially irreversible under physiological conditions. They play crucial regulatory roles in the pathway, controlling the flow of metabolites through glycolysis.