Depending upon the connected load ( R, RL, RC or RLC) with a transformer, the power goes ou from a transformer may be of two types: 1. Active Power; measured in kW 2. Reactive Power; measured in kVAR If the rating will be in kW, then kVAR rating would not be accounted but if the rating is in kVA then it is possible for us to calculate the total active and reactive current as well as the powers, at a particular system voltage!
kva and kw are related as KVA = (KW/PF) pf:power factor
To convert AC tonnage to kVA and kW, use the following formulas: For kVA: kVA = (tonnage x 3.517) For kW: kW = (tonnage x 3.517 x power factor). Remember to consider the power factor of the system when converting from tonnage to kVA and kW.
Yes, you can use both, but watts is more useful; it provides the total amount of power the generator can output.
The same way, as you convert Appels to Carrots ........... There is a formula: KVAr = KVA / KW or cos=KW/KVA > Yes, we are treating KW, KVA, & KVAr as the 3 sides in a 90 deg TRIANGLE ! KW= vertical katede KVAr = horizontal katede KVA = hypotenuse
Your question cannot be answered, unless the power factor of the load is specified. Since true power(measured in watts) is the product of apparent power(measured in volt amperes) and the power factor of the load.So, given your figure of an apparent power of 20 kV.A(not 'kva'*), the corresponding value of true power could (theoretically!) range from20 kW at a power factor of 1.0, to0 kW at a power factor of 0.(*The correct symbol for kilovolt ampere is 'kV.A', not 'kva', and the correct symbol for kilowatt is 'kW', not 'kw'.)
To convert kilowatts (kW) to kilovolt-amperes (kVA), you can use the formula kVA = kW / power factor. If we assume a typical power factor of 0.8, 360 kW would be approximately 450 kVA (360 kW / 0.8 = 450 kVA). If the power factor is different, you would need to adjust the calculation accordingly.
To convert 2 kW to kVA in single phase, you need to know the power factor. If we assume a power factor of 0.8 (common for many single-phase loads), the conversion formula is kVA = kW / power factor. Therefore, for 2 kW at a power factor of 0.8, the result would be 2 kVA / 0.8 = 2.5 kVA.
kVA = kW divided by (power factor). The power factor is the cosine of the angle between voltage and current.
Multiply by Amps.
It depends on the power factor, which depends on the reactance of the load.For a typical power factor of 0.92, 150 KVAR translates to 383 KVA, which translates to 352 KW.Power factor is the cosine of the phase angle (theta) between voltage and current. KVA times cosine (theta) is KW, while KVA times sine (theta) is KVAR.
To determine the KVA needed to run a 55 kW motor, you can use the formula: KVA = KW / Power Factor. Assuming a typical power factor of 0.8 for motors, the calculation would be KVA = 55 kW / 0.8 = 68.75 KVA. Therefore, approximately 68.75 KVA is needed to run the 55 kW motor. Adjust the power factor accordingly if you have a specific value for your motor.
kva*cos(phase angle)