gene
The specific expressed sequence of DNA that codes for a protein in this genetic sequence is called a gene.
Ribosomes are known as the protein factory of the cell. ... As they synthesizes the proteins by gathering and assembling amino acids into protein chains. The process through which Ribosome produces proteins is called Translation.
The process of converting mRNA into a sequence of amino acids is called translation. During translation, mRNA is read by ribosomes to produce a specific sequence of amino acids according to the genetic code. This sequence of amino acids then folds into a protein with a specific function.
Peptide sequence or amino acid sequence is the order in which amino acid residues, connected by peptide bonds, lie in the chain in peptides and proteins. The sequence is generally reported from the N-terminal end containing free amino group to the C-terminal end containing free carboxyl group. Peptide sequence is often called protein sequence if it represents the primary structure of a protein.
The process by which the expressed sequence of DNA codes for a protein is called protein synthesis. This process involves two main steps: transcription, where the DNA sequence is copied into a messenger RNA (mRNA) molecule, and translation, where the mRNA is used as a template to assemble amino acids into a protein.
The specific expressed sequence of DNA that codes for a protein in this genetic sequence is called a gene.
Ribosomes are often called protein factories because they are responsible for synthesizing proteins in the cell. They read the genetic information from mRNA and use this information to assemble amino acids into a specific sequence, forming proteins. This process of translation is essential for cell function and is where protein synthesis takes place.
Ribosomes are known as the protein factory of the cell. ... As they synthesizes the proteins by gathering and assembling amino acids into protein chains. The process through which Ribosome produces proteins is called Translation.
The sequence of nucleotides in DNA specifies the sequence of amino acids in a protein. Each set of three nucleotides, called a codon, corresponds to a specific amino acid or a signal to start or stop protein synthesis.
The process of converting mRNA into a sequence of amino acids is called translation. During translation, mRNA is read by ribosomes to produce a specific sequence of amino acids according to the genetic code. This sequence of amino acids then folds into a protein with a specific function.
Primary structure of a protein represents the sequence of the amino acids of that particular protein. The amino acids are bonded together by a bond called 'peptide bond'. The peptide bond is formed by carbonyl group of an amino acid with nitrogen group of the adjacent amino acid. Only this peptide bond is responsible for the formation of primary structure of protein. Hence the ionic bonds are not involved in the primary structures of protein.
Peptide sequence or amino acid sequence is the order in which amino acid residues, connected by peptide bonds, lie in the chain in peptides and proteins. The sequence is generally reported from the N-terminal end containing free amino group to the C-terminal end containing free carboxyl group. Peptide sequence is often called protein sequence if it represents the primary structure of a protein.
The intermediate molecule formed between DNA and protein is mRNA (messenger RNA). The process in which the DNA sequence is copied to an RNA sequence is called transcription. The process in which the mRNA template is read to produce protein is called translation (protein synthesis)
The process by which the expressed sequence of DNA codes for a protein is called protein synthesis. This process involves two main steps: transcription, where the DNA sequence is copied into a messenger RNA (mRNA) molecule, and translation, where the mRNA is used as a template to assemble amino acids into a protein.
gene
The process of translating DNA into a protein sequence is called protein synthesis. It involves two main steps: transcription and translation. During transcription, the DNA sequence is copied into a messenger RNA (mRNA) molecule. This mRNA molecule is then used as a template during translation, where transfer RNA (tRNA) molecules bring amino acids to the ribosome, which reads the mRNA sequence and assembles the amino acids into a protein sequence.
Inside a lung cell is cytoplasm and inside that are things called ribosomes. These are the things that synthesize proteins or manufacture proteins which go into the mucus.HOPE THIS HELPS!