answersLogoWhite

0

A potassium enhanced intravenous solution would increase the concentration of potassium ions in the brain. Since potassium ions are positively charged, they depolarize the resting membrane potential. For example, a resting membrane potential of -65 millivolts would be depolarized to -62 millivolts. An appropriate concentration could lead to a significant depolarization of, say, -60 millivolts, at which point an action potential could be possible.

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Biology

How does potassium affect the resting membrane potential of the cardiac cell?

Potassium plays a crucial role in maintaining the resting membrane potential of cardiac cells. It helps establish the negative charge inside the cell by moving out of the cell through potassium channels. This outward movement of potassium ions contributes to the polarization of the cell membrane, creating a negative resting membrane potential.


What effect did increasing the extracellular potassium have on the resting membrane potential?

Increasing the extracellular potassium concentration can depolarize the resting membrane potential, making it less negative. This can lead to increased excitability of the cell.


Excessive vomiting for example can deplete the body's K reserves and abnormally lower the potassium concentration in the plasma hypokalemia The membrane potential of cells under the influence of?

Hypokalemia, caused by excessive vomiting, can lead to low potassium levels in the plasma, disrupting the membrane potential of cells. This disruption can affect nerve and muscle function, leading to symptoms such as muscle weakness, cramps, and irregular heartbeats. Treatment involves replacing potassium through oral or intravenous supplementation.


Period during which potassium ions diffuse out of the neuron due to a change in membrane permeability?

Membrane potential - a nerve cell set and ready to fire;"The wave of reverse polarity" i.e. sodium versus potassium trans-cell-membrane ion passaging - a nerve cell firing; andRecharge period - the regeneration time.


Potassium channels open late in the action potential to cause membrane?

repolarization by allowing potassium ions to flow out of the cell, restoring the negative resting membrane potential. This helps terminate the action potential and allows the cell to prepare for the next stimulus. The delayed opening of potassium channels helps ensure proper signaling and coordination of cellular functions.

Related Questions

Through the membrane of a resting neuron highly permeable to potassium ions its membrane potential does not exactly match the equilibrium potential for potassium because the neuronal membrane is?

The neuronal membrane also has ion channels for other ions besides potassium, such as sodium or chloride, that can influence the resting membrane potential. These other ions contribute to the overall equilibrium potential of the neuron, which affects its resting membrane potential. Additionally, the activity of Na+/K+ pumps helps establish and maintain the resting membrane potential, contributing to the slight difference from the potassium equilibrium potential.


Why is there a resting membrane potential across the cell membrane?

sodium/potassium pump


Why resting membrane potential value sodium is closer to equilibrium of potassium?

The resting membrane potential value for sodium is closer to the equilibrium of potassium because the sodium-potassium pump actively maintains a higher concentration of potassium inside the cell and a higher concentration of sodium outside the cell. This leads to a higher permeability of potassium ions at rest, resulting in the resting membrane potential being closer to the equilibrium potential of potassium.


How does potassium affect the resting membrane potential of the cardiac cell?

Potassium plays a crucial role in maintaining the resting membrane potential of cardiac cells. It helps establish the negative charge inside the cell by moving out of the cell through potassium channels. This outward movement of potassium ions contributes to the polarization of the cell membrane, creating a negative resting membrane potential.


The membrane-bound enzyme system that restores and maintains the resting membrane potential is what pump?

The membrane-bound enzyme system responsible for restoring and maintaining the resting membrane potential is the sodium-potassium pump. It actively transports sodium ions out of the cell and potassium ions into the cell against their concentration gradients to establish the resting membrane potential.


Most diffusable ion in memebrane potential is?

Potassium ions are the most diffusible ion in the membrane potential because of the presence of leak channels that allow potassium to move easily across the membrane. This creates a concentration gradient that drives the movement of potassium ions into and out of the cell to establish the resting membrane potential.


Why increasing extracellular potassium causes the membrane potential to change to a less negative value. how well does the results compare with your prediction?

Increasing extracellular potassium (K+) reduces the concentration gradient between the inside and outside of the cell, leading to a decrease in the driving force for potassium to exit the cell. As a result, the membrane potential becomes less negative (depolarizes) because the resting membrane potential is influenced by the relative permeability of the membrane to potassium ions. This outcome aligns with the prediction that an increase in extracellular potassium would diminish the negativity of the membrane potential, confirming the importance of K+ concentration gradients in maintaining resting membrane potential.


What effect did increasing the extracellular potassium have on the resting membrane potential?

Increasing the extracellular potassium concentration can depolarize the resting membrane potential, making it less negative. This can lead to increased excitability of the cell.


What is the sequence of events of a threshold potential?

Death.


What ion determines the resting membrane potential of nerve and muscle?

The potassium ion (K+) plays a major role in determining the resting membrane potential of nerve and muscle cells. This is because these cells have a higher permeability to potassium ions than other ions, such as sodium ions. As a result, the movement of potassium ions out of the cell through potassium leak channels leads to the establishment and maintenance of the negative resting membrane potential.


Why is the resting potential value of a membrane negative?

The resting membrane potential is the difference between the inside of the cell relative to the outside. The outside is always taken as 0mv. The resting membrane potential is negative because there is a higher concentration of potassium ions outside the cell (because the membrane is more permeable to potassium ions) than inside. Since potassium ions are positively charged this leads to a negative value.


Excessive vomiting for example can deplete the body's K reserves and abnormally lower the potassium concentration in the plasma hypokalemia The membrane potential of cells under the influence of?

Hypokalemia, caused by excessive vomiting, can lead to low potassium levels in the plasma, disrupting the membrane potential of cells. This disruption can affect nerve and muscle function, leading to symptoms such as muscle weakness, cramps, and irregular heartbeats. Treatment involves replacing potassium through oral or intravenous supplementation.