To make a 1N solution of H3PO4 (phosphoric acid), dissolve 98 g of pure H3PO4 in water and dilute to 1 liter with water. Make sure to follow proper safety precautions when working with concentrated acids.
Yes, you can make a 1N NaOH solution from a 0.1N NaOH solution by diluting it 10 times. For example, to make 1 liter of 1N NaOH solution, you would mix 100 ml of the 0.1N NaOH solution with 900 ml of water.
To standardize 1N H2SO4 with KHP, you would first prepare a solution of KHP of known concentration. Then, titrate the KHP solution with the 1N H2SO4 solution until the endpoint is reached. The volume of H2SO4 used in the titration can then be used to calculate the exact concentration of the H2SO4 solution.
To prepare 0.1N NaOH solution from a 1N NaOH solution, you can dilute 1 part of the 1N solution with 9 parts of water (since 1/10 = 0.1). Measure 1 volume of the 1N NaOH solution and add 9 volumes of water to it, then mix well to get your 0.1N NaOH solution.
To prepare a 1N solution of sulfuric acid (H2SO4), you would need to dissolve 49 grams of H2SO4 in enough water to make 1 liter of solution. Since the density of sulfuric acid is around 1.84 g/ml, you would need approximately 26.6 ml of H2SO4 to make a 1N solution.
To prepare 1N H2SO4 from 95% H2SO4, you would first need to dilute the 95% H2SO4 with water by adding the appropriate amount of water to achieve the desired concentration. To calculate the volume of 95% H2SO4 needed to make 1N solution, you need to use the formula: (Normality of stock solution) * (Volume of stock solution) = (Normality of diluted solution) * (Volume of diluted solution). Adjust the volumes accordingly to prepare the desired 1N solution.
Yes, you can make a 1N NaOH solution from a 0.1N NaOH solution by diluting it 10 times. For example, to make 1 liter of 1N NaOH solution, you would mix 100 ml of the 0.1N NaOH solution with 900 ml of water.
To standardize 1N H2SO4 with KHP, you would first prepare a solution of KHP of known concentration. Then, titrate the KHP solution with the 1N H2SO4 solution until the endpoint is reached. The volume of H2SO4 used in the titration can then be used to calculate the exact concentration of the H2SO4 solution.
To prepare 0.1N NaOH solution from a 1N NaOH solution, you can dilute 1 part of the 1N solution with 9 parts of water (since 1/10 = 0.1). Measure 1 volume of the 1N NaOH solution and add 9 volumes of water to it, then mix well to get your 0.1N NaOH solution.
To prepare a 1N solution of sulfuric acid (H2SO4), you would need to dissolve 49 grams of H2SO4 in enough water to make 1 liter of solution. Since the density of sulfuric acid is around 1.84 g/ml, you would need approximately 26.6 ml of H2SO4 to make a 1N solution.
To prepare 1N H2SO4 from 95% H2SO4, you would first need to dilute the 95% H2SO4 with water by adding the appropriate amount of water to achieve the desired concentration. To calculate the volume of 95% H2SO4 needed to make 1N solution, you need to use the formula: (Normality of stock solution) * (Volume of stock solution) = (Normality of diluted solution) * (Volume of diluted solution). Adjust the volumes accordingly to prepare the desired 1N solution.
By dilution (1000x) with water: Take 1.0 mL 1.0N HCl and add up to 1000 mL with pure water.
Take specific volume of 3N solution and increase the volume three times by adding distilled water.
To standardize 1N HCl (hydrochloric acid), you would typically use a primary standard base, such as sodium hydroxide (NaOH), of known concentration to titrate the HCl solution. By carefully titrating the HCl with the NaOH, you can determine the exact concentration of the HCl solution. This information can then be used to adjust the concentration of the HCl solution as needed to make it accurately 1N.
The pH of a 1N HCl solution can be calculated using the formula pH = -log[H+], where [H+] is the concentration of H+ ions in the solution. For a 1N solution of HCl, the concentration of H+ ions will be 1M, so the pH will be -log(1) = 0.
To prepare a 1N NaOH solution, you would need to dissolve 40 grams of NaOH in water to make 1 liter of solution. This amount is used because 1N solution means 1 mole of NaOH per liter of solution, and the molar mass of NaOH is 40 g/mol, so 40 grams of NaOH is needed to have 1 mole in 1 liter of solution.
1N sulfuric acid is equivalent to a concentration of 1 mole of sulfuric acid per liter of solution. To determine the percentage purity, you would need to know the exact concentration of sulfuric acid present in the solution compared to the theoretical concentration of 1N. Without this information, it is not possible to calculate the percentage purity.
To prepare 6N HCl from 1N HCl, you can dilute the 1N HCl by adding 6 times the volume of water to the 1N HCl solution. For example, mix 1 volume of 1N HCl with 6 volumes of water to get a final concentration of 6N HCl. Make sure to add acid to water slowly with stirring to avoid splashes and heat generation.