To do this, you need to know the molecular weight of the element you're dealing with, by adding up the atomic weights of the elements involved (found on any Periodic Table). The molecular weight is the mass in grams of the compound in one mole - this will provide you with a conversion factor. So take the measurement in grams and divide it by the molecular weight to convert to moles. Really what you're doing is multiplying the number by 1 mole, and dividing it by the equivalent of one mole, the molecular weight. That's the thought process behind unit analysis and how you get your "units to cancel".
In this case, the answer is about 2 grams NaOH.
The number of moles of NaOH used in the titration process can be calculated by dividing the volume of NaOH solution used by the molarity of the NaOH solution.
When titrating NaOH with KHP (potassium hydrogen phthalate), the number of moles of NaOH will be equal to the number of moles of KHP at the equivalence point. This is because the reaction is stoichiometric, with one mole of NaOH reacting with one mole of KHP.
To calculate the grams of NaOH in the solution, you first need to find the moles of NaOH present in 400.0 ml of the solution. The moles of NaOH can be calculated using the formula: moles = molarity x volume (in liters). Once you have the moles of NaOH, you can then calculate the grams using the formula: grams = moles x molecular weight.
First, calculate the number of moles of NaOH: Moles = Molarity x Volume (L) Convert mL to L: 450 mL = 0.45 L Moles = 0.25 N x 0.45 L = 0.1125 moles of NaOH.
Molarity = moles of solute/Liters of solution ( 24.5 mL = 0.0245 L)Rearranged,moles of solute = Liters of solution * MolarityMoles NaOH = (0.0245 L)(0.130 M NaOH)= 3.19 X 10 -3 moles NaOH==================
208g NaOH
The number of moles is 0,0038.
Molarity = moles of solute/Liters of solution 3.42 M NaOH = 1.3 moles NaOH/Liters NaOH Liters NaOH = 1.3 moles NaOH/3.42 M NaOH = 0.38 Liters
moles = mass/Mr moles = 100/(23+16+1) moles of NaOH = 2.5mol
The number of moles of NaOH used in the titration process can be calculated by dividing the volume of NaOH solution used by the molarity of the NaOH solution.
8 g NaOH x 1 mole NaOH/40 g = 0.2 moles NaOH
When titrating NaOH with KHP (potassium hydrogen phthalate), the number of moles of NaOH will be equal to the number of moles of KHP at the equivalence point. This is because the reaction is stoichiometric, with one mole of NaOH reacting with one mole of KHP.
To calculate the grams of NaOH in the solution, you first need to find the moles of NaOH present in 400.0 ml of the solution. The moles of NaOH can be calculated using the formula: moles = molarity x volume (in liters). Once you have the moles of NaOH, you can then calculate the grams using the formula: grams = moles x molecular weight.
First, calculate the number of moles of NaOH: Moles = Molarity x Volume (L) Convert mL to L: 450 mL = 0.45 L Moles = 0.25 N x 0.45 L = 0.1125 moles of NaOH.
Molarity = moles of solute/Liters of solution ( 24.5 mL = 0.0245 L)Rearranged,moles of solute = Liters of solution * MolarityMoles NaOH = (0.0245 L)(0.130 M NaOH)= 3.19 X 10 -3 moles NaOH==================
3.42 moles NaOH (39.998 grams/1 mole NaOH) = 137 grams NaOH
Moles/Liters=Molarity (M) therefore: Molarity*Liters=moles Since you were given milliliters, you must first convert your volume to liters for the equation to be accurate. 2.2M*.065L=moles=.143 moles NaOH