moles = mass/Mr moles = 100/(23+16+1) moles of NaOH = 2.5mol
To find the number of moles in 9.4 g of NaOH, you first need to calculate the molar mass of NaOH (22.99 g/mol for Na, 15.999 g/mol for O, and 1.008 g/mol for H). Add these together to get 39.997 g/mol for NaOH. Next, divide the given mass by the molar mass to get the number of moles: 9.4 g / 39.997 g/mol ≈ 0.235 moles of NaOH.
The balanced chemical equation for the reaction between HCl and NaOH is: HCl + NaOH -> NaCl + H2O Since the stoichiometry of the reaction is 1:1 for NaCl and HCl, if 1.4 moles of HCl react, then 1.4 moles of NaCl will be formed.
Balanced Equation. NaOH + HNO3 >> NaNO3 + H2O Now, Molarity = moles of solute/liters of solution 0.800M HNO3 + mol/2.50L mol of HNO3 = 2 2mol HNO3 (1mol NaOH/1molHNO3 )(39.998g NaOH/1mol NaOH ) = 79.996 grams
Write out the equation, and remember to balance each side.Na2CO3 + Ca(OH)2 --> 2NaOH + CaCO3Molecular WeightsNa2CO3: 106 grams/moleNaOH: 40 grams/moleAlways convert your reagents into moles.(120g Na2CO3) x (1 mole Na2CO3/106 grams Na2CO3) = 1.132 molesAccording to the balanced equation, 1 molecule of Na2CO3 generates 2 molecules of NaOH.(1.132 moles Na2CO3) x (2 moles NaOH/1 mole Na2CO3) = 2.264 moles NaOHNow determine the number of grams from 2.264 moles of NaOH.(2.264 moles NaOH) x (40 grams/ 1 mole NaOH) = 90.57 grams NaOH formed.To prevent rounding off too many times, carry out the dimensional analysis in one step:(120g Na2CO3) x (1 mole Na2CO3/106 grams Na2CO3) x(2 moles NaOH/1 mole Na2CO3) x (40 grams/ 1 mole NaOH) = 90.57 grams NaOH
To find the number of moles in 4.75g of sodium hydroxide, you first need to determine the molar mass of sodium hydroxide (NaOH), which is about 40g/mol. Then divide the given mass (4.75g) by the molar mass to obtain the number of moles: 4.75g / 40g/mol = 0.119 moles of NaOH.
208g NaOH
The number of moles is 0,0038.
Molarity = moles of solute/Liters of solution 3.42 M NaOH = 1.3 moles NaOH/Liters NaOH Liters NaOH = 1.3 moles NaOH/3.42 M NaOH = 0.38 Liters
how many moles are in 95.0 gram of octane?
The number of moles of NaOH used in the titration process can be calculated by dividing the volume of NaOH solution used by the molarity of the NaOH solution.
8 g NaOH x 1 mole NaOH/40 g = 0.2 moles NaOH
When titrating NaOH with KHP (potassium hydrogen phthalate), the number of moles of NaOH will be equal to the number of moles of KHP at the equivalence point. This is because the reaction is stoichiometric, with one mole of NaOH reacting with one mole of KHP.
To calculate the grams of NaOH in the solution, you first need to find the moles of NaOH present in 400.0 ml of the solution. The moles of NaOH can be calculated using the formula: moles = molarity x volume (in liters). Once you have the moles of NaOH, you can then calculate the grams using the formula: grams = moles x molecular weight.
First, calculate the number of moles of NaOH: Moles = Molarity x Volume (L) Convert mL to L: 450 mL = 0.45 L Moles = 0.25 N x 0.45 L = 0.1125 moles of NaOH.
Molarity = moles of solute/Liters of solution ( 24.5 mL = 0.0245 L)Rearranged,moles of solute = Liters of solution * MolarityMoles NaOH = (0.0245 L)(0.130 M NaOH)= 3.19 X 10 -3 moles NaOH==================
3.42 moles NaOH (39.998 grams/1 mole NaOH) = 137 grams NaOH
Moles/Liters=Molarity (M) therefore: Molarity*Liters=moles Since you were given milliliters, you must first convert your volume to liters for the equation to be accurate. 2.2M*.065L=moles=.143 moles NaOH