If you have 1.4 mol of carbon before the reaction you have 1,4 mol of carbon after the reaction. If you make carbon monoxide, CO, then you need 1.4 mol of CO after the reactiion. If you make carbon dioxide, CO2, you need 1.4 mol of C2O, because you have one carbon in each molecule.
If 3 moles of SO2 reacts, then 3 moles of CS2 will form since the reaction ratio between SO2 and CS2 in the reaction is 1:1.
Using the balanced equation 2 AlCl₃ + 3 Pb(NO₃)₂ → 3 PbCl₂ + 2 Al(NO₃)₃, the mole ratio between AlCl₃ and PbCl₂ is 2:3. Therefore, if 14 moles of AlCl₃ are consumed, 9.33 moles (14 moles / 2 * 3) of PbCl₂ will be produced.
None, unless there is metallic potassium in the reaction mixture. Assuming excess potassium metal is present then 14 moles of KBr can be produced. 7BaBr2 + excess potassium -----> 14KBr + 7 Ba
The heat of reaction per mole can be calculated by dividing the energy produced by the number of moles. In this case, 84 J of energy produced by 6 moles of the compound gives a heat of reaction of 14 J/mol.
84 J/6 moles = 14 J/mole = ∆H
If 3 moles of SO2 reacts, then 3 moles of CS2 will form since the reaction ratio between SO2 and CS2 in the reaction is 1:1.
Using the balanced equation 2 AlCl₃ + 3 Pb(NO₃)₂ → 3 PbCl₂ + 2 Al(NO₃)₃, the mole ratio between AlCl₃ and PbCl₂ is 2:3. Therefore, if 14 moles of AlCl₃ are consumed, 9.33 moles (14 moles / 2 * 3) of PbCl₂ will be produced.
None, unless there is metallic potassium in the reaction mixture. Assuming excess potassium metal is present then 14 moles of KBr can be produced. 7BaBr2 + excess potassium -----> 14KBr + 7 Ba
2KClO3 + heat -> 2KCl + 3O2 14 moles KClO3 (3 mole O2/2 mole KClO3) = 21 moles oxygen made This is a common industrial method of producing oxygen.
The heat of reaction per mole can be calculated by dividing the energy produced by the number of moles. In this case, 84 J of energy produced by 6 moles of the compound gives a heat of reaction of 14 J/mol.
84 J/6 moles = 14 J/mole = ∆H
1,0.10e9 atoms is equivalent to 0,166.10e-14 moles.
Since 14 (4+10) moles of P4O10 contains 4 moles of Phosphorus, 8 moles of P4O10 will contain :: (8 x 4)/14 = 2.286 moles of Phosphorus
The calculation is: Moles = Mass / Atomic Mass Moles = 0.085 / 17 Moles = 0.005 Atomic mass is 17 because ammonia is NH3, with N = 14, and H = 1. 14 + 1 + 1 + 1 = 17.
-14 J/Mol
To calculate the cellular respiration rate in moles of glucose per minute, you need to convert the volume of CO2 produced into moles using the ideal gas law. Then, you can use the stoichiometry of the cellular respiration reaction to relate the moles of CO2 produced to moles of glucose consumed. Once you have both values, you can determine the rate of glucose consumption per minute.
There are 29/14, or just over 2 moles of nitrogen in 19 grams.