0.46 moles (230/100 x 2)
In hydrochloric acid (HCl), there is one mole of chlorine for every mole of hydrochloric acid. Therefore, in 3.4 moles of hydrochloric acid, there are also 3.4 moles of chlorine.
1.5 moles of Hydrogen. In every mole of H2SO4 (Sulfuric Acid) there are 2 moles of Hydrogen atoms. So, in .75 moles of Sulfuric Acid, there would be 1.5 (double the moles of sulfuric acid) moles of Hydrogen.
A mole of sulfuric acid (H2SO4) contains one mole of sulfur (S), two moles of hydrogen (H), and four moles of oxygen (O).
Starting with the formula: 2HNO3 --> H2O + NO2 If you have 0.4 moles of nitric acid (HNO3), you will get half the number of moles of NO2. So, you will have 0.2 moles of nitric acid.
To calculate the number of moles in 5 grams of oxalic acid (C2H2O4), first determine the molar mass of oxalic acid, which is 90.03 g/mol. Then, divide the mass (5 grams) by the molar mass to get the number of moles. In this case, 5 grams is equal to approximately 0.055 moles of oxalic acid.
In hydrochloric acid (HCl), there is one mole of chlorine for every mole of hydrochloric acid. Therefore, in 3.4 moles of hydrochloric acid, there are also 3.4 moles of chlorine.
All of the moles of pure acid will have dissolved in the flask.
1.5 moles of Hydrogen. In every mole of H2SO4 (Sulfuric Acid) there are 2 moles of Hydrogen atoms. So, in .75 moles of Sulfuric Acid, there would be 1.5 (double the moles of sulfuric acid) moles of Hydrogen.
Sulfuric acid is not obtained from water.
In the acid-base reaction where sodium hydroxide and sulfuric acid react, the formula is: H2SO4 + 2NaOH --> Na2SO4 + 2H2O. The coefficients shown are necessary to uphold the law of conservation of mass. So, if you have 17 moles of sulfuric acid, you will need twice as many moles of sodium hydroxide, so the answer is 34 moles NaOH.
The answer is 699 moles perchloric acid.
I think you meant " How many moles of acetic acid in 25 grams of acetic acid? " We will use the chemist formula for acetic acid, 25 grams C2H4O2 (1 mole C2H4O2/60.052 grams) = 0.42 mole acetic acid =================
A mole of sulfuric acid (H2SO4) contains one mole of sulfur (S), two moles of hydrogen (H), and four moles of oxygen (O).
Starting with the formula: 2HNO3 --> H2O + NO2 If you have 0.4 moles of nitric acid (HNO3), you will get half the number of moles of NO2. So, you will have 0.2 moles of nitric acid.
0,028 moles carbonic are obtained.
Since both the acid and the base have equivalent weights equal to their formula weights, 2 moles of KOH are needed to neutralize 2 moles of nitric acid.
To calculate the number of moles in 5 grams of oxalic acid (C2H2O4), first determine the molar mass of oxalic acid, which is 90.03 g/mol. Then, divide the mass (5 grams) by the molar mass to get the number of moles. In this case, 5 grams is equal to approximately 0.055 moles of oxalic acid.