The molarity of a solution is calculated by dividing the number of moles of solute by the volume of the solution in liters. In this case, the molarity of the solution with 4 mol of NaOH dissolved in 2 L of water would be 2 M.
The molarity can be calculated by dividing the number of moles of solute by the volume of solution in liters. In this case, the molarity would be 2 M (4 mol NaOH / 2 L water).
To find the molarity, we first need to calculate the number of moles of NaOH. The molar mass of NaOH is 40 g/mol (sodium=23g/mol, oxygen=16g/mol, hydrogen=1g/mol). Thus, 80g NaOH is 2 moles (80g / 40g/mol). Given 1L of solution, the molarity is 2 moles / 1 L = 2 M.
0.1 M NaOH is prepared by dissolving sodium hydroxide (NaOH) pellets or flakes in water to make a 0.1 molar solution. This means there are 0.1 moles of NaOH dissolved in 1 liter of water. The molarity of the solution is calculated using the formula: Molarity = moles of solute / liters of solution.
The molarity of the solution can be calculated by dividing the moles of solute by the volume of solution in liters. In this case, 2 moles of NaOH in 1620 mL (1.62 L) of water gives a molarity of approximately 1.23 M.
To calculate the molarity, you first need to convert the grams of NaOH to moles using the molar mass of NaOH (40 g/mol). Then, you divide the moles of NaOH by the volume of solution in liters (450 ml = 0.45 L) to get the molarity. Molarity = moles of NaOH / volume of solution in liters Moles of NaOH = 95 g / 40 g/mol = 2.375 mol Molarity = 2.375 mol / 0.45 L = 5.28 M
This depends on the mass of NaOH dissolved in 1 L water.
The molarity can be calculated by dividing the number of moles of solute by the volume of solution in liters. In this case, the molarity would be 2 M (4 mol NaOH / 2 L water).
To find the molarity, we first need to calculate the number of moles of NaOH. The molar mass of NaOH is 40 g/mol (sodium=23g/mol, oxygen=16g/mol, hydrogen=1g/mol). Thus, 80g NaOH is 2 moles (80g / 40g/mol). Given 1L of solution, the molarity is 2 moles / 1 L = 2 M.
0.1 M NaOH is prepared by dissolving sodium hydroxide (NaOH) pellets or flakes in water to make a 0.1 molar solution. This means there are 0.1 moles of NaOH dissolved in 1 liter of water. The molarity of the solution is calculated using the formula: Molarity = moles of solute / liters of solution.
The molarity of the solution can be calculated by dividing the moles of solute by the volume of solution in liters. In this case, 2 moles of NaOH in 1620 mL (1.62 L) of water gives a molarity of approximately 1.23 M.
To calculate the molarity, you first need to convert the grams of NaOH to moles using the molar mass of NaOH (40 g/mol). Then, you divide the moles of NaOH by the volume of solution in liters (450 ml = 0.45 L) to get the molarity. Molarity = moles of NaOH / volume of solution in liters Moles of NaOH = 95 g / 40 g/mol = 2.375 mol Molarity = 2.375 mol / 0.45 L = 5.28 M
The molarity of a NaOH solution is determined by the concentration of NaOH in moles per liter of solution. It is calculated by dividing the moles of NaOH by the volume of solution in liters. For example, a 0.1 M NaOH solution would contain 0.1 moles of NaOH per liter of solution.
2 m
To find the molarity, you need to know the amount in moles of NaOH and the volume in liters. First, convert 10 mL to liters by dividing by 1000 (10 mL = 0.01 L). Then, calculate the number of moles of NaOH using the molarity formula, Molarity = moles/volume. Given that you have 0.05 moles of NaOH and a volume of 0.01 L, the molarity would be 5 M.
To find the molarity, we first need to convert the mass of water to volume using the density of water. Given the density of water is approximately 1000 g/L, 6 kg of water is equivalent to 6000 g or 6 L. Next, calculate the molarity using the formula Molarity (M) = moles of solute / liters of solution. In this case, 2 moles of NaOH in 6 L of water gives a molarity of 0.33 M.
Molarity = moles of solute / liters of solution. First, calculate the moles of NaOH using its molar mass. Then, divide the moles by the final volume in liters (3.00 L) to find the molarity.
Sodium hydroxide (NaOH) itself is a solid compound, but it can be dissolved in water to form a solution. When NaOH is dissolved, it dissociates into sodium ions (Na⁺) and hydroxide ions (OH⁻), creating a strongly alkaline solution. Thus, while NaOH is not a solution in its solid form, it becomes one when properly dissolved in water.