This solution contain 26,3 g NaOH.
The molarity of a NaOH solution is determined by the concentration of NaOH in moles per liter of solution. It is calculated by dividing the moles of NaOH by the volume of solution in liters. For example, a 0.1 M NaOH solution would contain 0.1 moles of NaOH per liter of solution.
The answer is 0,625 moles.
You have to realise that a drop from the burette for instance is insignificant, if you are dealing with at least 10ml solution which you usually deal with on a titration. If you don't want to regard it as insignificant, then if NaOH is in the burette, then the solution doesn't become more concentrated with NaOH because that drop escaped.
The solution of NaOH in methyl orange indicator will turn from yellow to red. Methyl orange is an acid-base indicator that changes color in response to a change in pH. In the presence of a strong base like NaOH, the indicator will change to a red color indicating the basic nature of the solution.
To prepare a 0.1N solution of NaOH, dissolve 4g of NaOH pellets in enough distilled water to make 1 liter of solution. This will result in a solution with a concentration of 0.1N of NaOH.
Yes, you can make a 1N NaOH solution from a 0.1N NaOH solution by diluting it 10 times. For example, to make 1 liter of 1N NaOH solution, you would mix 100 ml of the 0.1N NaOH solution with 900 ml of water.
This solution contain 26,3 g NaOH.
The molarity of a NaOH solution is determined by the concentration of NaOH in moles per liter of solution. It is calculated by dividing the moles of NaOH by the volume of solution in liters. For example, a 0.1 M NaOH solution would contain 0.1 moles of NaOH per liter of solution.
A 50% NaOH aqueous solution means that the solution contains 50% sodium hydroxide (NaOH) by weight and the rest is water. This concentration indicates that for every 100 grams of the solution, 50 grams is NaOH.
To prepare 0.1N NaOH solution from a 1N NaOH solution, you can dilute 1 part of the 1N solution with 9 parts of water (since 1/10 = 0.1). Measure 1 volume of the 1N NaOH solution and add 9 volumes of water to it, then mix well to get your 0.1N NaOH solution.
To prepare a 1N NaOH solution, you would need to dissolve 40 grams of NaOH in water to make 1 liter of solution. This amount is used because 1N solution means 1 mole of NaOH per liter of solution, and the molar mass of NaOH is 40 g/mol, so 40 grams of NaOH is needed to have 1 mole in 1 liter of solution.
The answer is 0,625 moles.
You would need to add 18.75g of solid NaOH to the 750g of aqueous solution to obtain a 2.5% NaOH solution by mass.
Standardizing the NaOH solution by dissolving a measured mass of solid NaOH ensures that the concentration of the solution is accurately known and consistent for use in experiments or analyses.
One liter of a one molar solution of NaOH in water contains 40g of NaOH. The quantity must be known.
The number of moles of NaOH used in the titration process can be calculated by dividing the volume of NaOH solution used by the molarity of the NaOH solution.