-1 for each Br and +4 for C
To find the number of molecules in 325g of CBr4, first calculate the number of moles using the molar mass of CBr4 (331.63 g/mol). Then, use Avogadro's number (6.022 x 10^23 molecules/mol) to convert moles to molecules. So, 325g of CBr4 is equal to about 0.981 moles, which is approximately 5.91 x 10^23 molecules.
The molecular formula should be CBr4. The oxidation numbers are -1 for each Br, +4 for C.
To calculate the number of molecules in 334 g of CBr4, you need to first convert the mass to moles using the molar mass of CBr4 (331.6 g/mol). Once you have the moles, you can then use Avogadro's number (6.022 x 10^23 molecules/mol) to find the number of molecules in 334 g of CBr4.
The oxidation number of acetate (CH3COO-) is -1. The carbon atom has an oxidation number of +3, each hydrogen atom has an oxidation number of +1, and the oxygen atoms have an oxidation number of -2.
The oxidation number of each hydrogen in H2CO2 is +1, while the oxidation number of each carbon in CO2 is +4. This is because hydrogen usually has an oxidation number of +1, and oxygen usually has an oxidation number of -2.
To find the number of molecules in 325g of CBr4, first calculate the number of moles using the molar mass of CBr4 (331.63 g/mol). Then, use Avogadro's number (6.022 x 10^23 molecules/mol) to convert moles to molecules. So, 325g of CBr4 is equal to about 0.981 moles, which is approximately 5.91 x 10^23 molecules.
The molecular formula should be CBr4. The oxidation numbers are -1 for each Br, +4 for C.
The molecular mass of CBr4 is 12.0 + 4(79.9) = 331.6Amount of CBr4 = mass of substance / molecular mass = 393/331.6 = 1.19mol This means that a 393g pure sample contains 1.19 moles of tetrabromomethane. The Avogadro's number is 6.02 x 10^23 So, number of molecules of CBr4 = 1.19 x 6.02 x 10^23 = 7.13 x 10^23
To calculate the number of molecules in 334 g of CBr4, you need to first convert the mass to moles using the molar mass of CBr4 (331.6 g/mol). Once you have the moles, you can then use Avogadro's number (6.022 x 10^23 molecules/mol) to find the number of molecules in 334 g of CBr4.
CBr4 , this is the correct formula for carbon-tetra-bromide
Hydrogen's oxidation number is +1.Chlorin's oxidation number is +1.Oxygen's oxidation number is -2.
There are 1.03 x 10^24 atoms of carbon in 4.25 moles of carbon tetrabromide (CBr4). This can be calculated by multiplying Avogadro's number (6.022 x 10^23) by the number of moles of carbon in CBr4 (4).
The oxidation number of acetate (CH3COO-) is -1. The carbon atom has an oxidation number of +3, each hydrogen atom has an oxidation number of +1, and the oxygen atoms have an oxidation number of -2.
The oxidation number of each hydrogen in H2CO2 is +1, while the oxidation number of each carbon in CO2 is +4. This is because hydrogen usually has an oxidation number of +1, and oxygen usually has an oxidation number of -2.
Silicon's oxidation number is +4.Oxygen's oxidation number is -2
The oxidation number of nitrosyl (NO) is +1. Nitrogen typically has an oxidation number of -3, and oxygen typically has an oxidation number of -2. In NO, nitrogen has a -3 oxidation number and oxygen has a -2 oxidation number, leading to an overall oxidation number of +1 for the nitrosyl ion.
Oxidation number of Nb is +4. Oxidation number of O is -2.