It should be Fluorine but Chlorine has most EGE value because the F atom has very small sizeas compared to Cl. Addition of extra electron creates higher electron density and thus strong electron - electron repulsion comes into act. So extra electron is not accepted with the same ease as in the case of remaining elements of the group
Electron affinity is the energy released when an atom gains an electron to form a negative ion, while electron gain enthalpy is the enthalpy change accompanying the addition of an electron to a gaseous atom. Electron affinity is a specific term used in the context of forming an ion, while electron gain enthalpy is a general term for the enthalpy change associated with gaining an electron.
The electron gain enthalpies of Mg and P are almost zero because both elements are inherently stable in their neutral state (Mg+ and P-). They have a full valence shell configuration, which makes them reluctant to gain additional electrons and become more stable. This results in low electron affinity values for both elements.
Good question. Halogens have their outer electronic configuration as ns2np5 and require only one more electron to gain a stable electronic configuration. So they have a great affinity for electrons and will accept them very easily by releasing energy. So they have the highest electron gain enthalpy.
Yes chlorine does have highest electro-negativity due to its highest electron gain enthalpy
Francium has the lowest electron affinity among all the elements because it is highly reactive and readily loses an electron to form a positive ion. This means that francium has a very low tendency to gain an electron.
Inert gases are the most stable ones, so if we try to add another electron, the stable electronic configuration is disturbed. So, we have supply energy for this process. Hence, electron gain enthalpy is positive.
Electron affinity is the energy released when an atom gains an electron to form a negative ion, while electron gain enthalpy is the enthalpy change accompanying the addition of an electron to a gaseous atom. Electron affinity is a specific term used in the context of forming an ion, while electron gain enthalpy is a general term for the enthalpy change associated with gaining an electron.
The electron gain enthalpy of hydrogen is approximately -72.8 kJ/mol, indicating that it releases energy when gaining an electron. In contrast, the electron gain enthalpy of phosphorus is approximately -78.6 kJ/mol, showing a larger energy release when phosphorus gains an electron due to its higher electronegativity.
Electron Gain Enthalpy is the amount of Energy released when an isolated gaseous atom accepts an electron to become a monovalent gaseous anion.For Example:Atom(gas) +Electron ---->Anion(gas) +Energy(Electron Gain Enthalpy)
Even though Fluorine has the highest electronegativity among all the elements and it should have the highest electron gain enthalpy among all the halogens but this is an exception and chlorine has higher electron gain enthalpy than Fluorine. The reason for this is that the size of Fluorine atom is very small and hence there is very high inter-electronic repulsion among the electrons of fluorine. This makes incoming of another electron not very favourable. Even though fluorine has large negative electron gain enthalpy but for chlorine its even more negative.
The electron gain enthalpies of Mg and P are almost zero because both elements are inherently stable in their neutral state (Mg+ and P-). They have a full valence shell configuration, which makes them reluctant to gain additional electrons and become more stable. This results in low electron affinity values for both elements.
hadan says fu ont now please contactv on this no 0971507995091
Sodium, Potassium, and other alkali metals are very reactive due to the low ionization enthalpy. Flourine, Chlorine and other halogens are very reactive due to the high negative electron gain enthalpy.
Good question. Halogens have their outer electronic configuration as ns2np5 and require only one more electron to gain a stable electronic configuration. So they have a great affinity for electrons and will accept them very easily by releasing energy. So they have the highest electron gain enthalpy.
The second electron gain of an oxygen atom would be expected to be less negative. The reason for this outcome is that the oxygen atom gaining a second electron already has one electron and thus a negative charge. This negative charge repels the second electron to some extent, making the enthalpy of this process less negative than when the first electron was added to the neutral oxygen atom.
They do not. An electron is negatively charged and an atom can only acquire a negative charge on gaining electrons.
Group 8A, the noble gases because they have high electron affinity.