It's kind of hard to make copper sulphate without any sulphate being present.
1-naphthol is added first to a carbohydrate solution to detect the presence of carbohydrates. Then, sulfuric acid (H2SO4) can be added to the solution to further test for specific carbohydrates based on color changes or precipitation.
To prepare 0.5 N sulfuric acid, you can mix 49 g of sulfuric acid (H2SO4) into enough water to make 1 liter of solution. This will give you a solution that has a concentration of 0.5 N, meaning it contains 0.5 moles of H2SO4 per liter of solution. Remember to always add acid to water slowly while stirring to avoid splashing and to ensure a safe preparation process.
Remember M1V1=M2V2, where M is molarity and V is volume. M1/M2=V2/V1, 10/1=v2/v1, For diluting the acid, we can add acid to water. So, assuming that 10M H2SO4 is having 1ml of water, we should add 1M of H2So4 to 10ml of water.
To dilute the 3.5 M H2SO4 solution to 2 M, you need to add water. Use the formula M1V1 = M2V2, where M represents molarity and V represent volume. For this situation, you'll end up adding 75 ml of water to the initial 75 ml of 3.5 M H2SO4 solution to achieve a final 2 M concentration.
Start with 1 dm^3 (1 Liter) of pure H2O. Molarity is defined as Mol/dm^3, so this is generally an easy way to go. Measure out 3 mol of H2SO4 -> First find the molar weight of Sulfuric acid, which is, according to Google: 98.079g/mol. So 3 mol * 98.079g/mol = 294.24 grams of H2SO4. Add that to 1 Liter of water, and you'll have an aqueous 3 Molar solution!
For preparation of standard solution of Mohr salt {FeSO4.(NH4)2SO4.6H2O}, it's necessary to add dilute H2SO4 to prevent the Fe2+ ions of Mohr salt solution from undergoing oxidation (to Fe3+).
To prepare a saturated solution of CuSO4 at room temperature, add the desired amount of CuSO4 to distilled water in a clean container. Stir the solution until no more CuSO4 dissolves, indicating saturation. Allow any undissolved CuSO4 to settle at the bottom before using the clear saturated solution.
The Cu2+ from CuSO4 is displaced by the Na+ from NaCl and CuCl2 and Na2SO4 are formed.
CuCO3 + H2SO4 --> CuSO4 + CO2 + H2O As this reaction shows just add copper carbonate crystals to a solution of sulfuric acid of diluted concentration. Carbon dioxide should efferves from this solution. I can not remember if the copper sulfate precipitates here, or is in ionized form.
1-naphthol is added first to a carbohydrate solution to detect the presence of carbohydrates. Then, sulfuric acid (H2SO4) can be added to the solution to further test for specific carbohydrates based on color changes or precipitation.
To prepare 0.5 N sulfuric acid, you can mix 49 g of sulfuric acid (H2SO4) into enough water to make 1 liter of solution. This will give you a solution that has a concentration of 0.5 N, meaning it contains 0.5 moles of H2SO4 per liter of solution. Remember to always add acid to water slowly while stirring to avoid splashing and to ensure a safe preparation process.
Remember M1V1=M2V2, where M is molarity and V is volume. M1/M2=V2/V1, 10/1=v2/v1, For diluting the acid, we can add acid to water. So, assuming that 10M H2SO4 is having 1ml of water, we should add 1M of H2So4 to 10ml of water.
To dilute the 3.5 M H2SO4 solution to 2 M, you need to add water. Use the formula M1V1 = M2V2, where M represents molarity and V represent volume. For this situation, you'll end up adding 75 ml of water to the initial 75 ml of 3.5 M H2SO4 solution to achieve a final 2 M concentration.
Start with 1 dm^3 (1 Liter) of pure H2O. Molarity is defined as Mol/dm^3, so this is generally an easy way to go. Measure out 3 mol of H2SO4 -> First find the molar weight of Sulfuric acid, which is, according to Google: 98.079g/mol. So 3 mol * 98.079g/mol = 294.24 grams of H2SO4. Add that to 1 Liter of water, and you'll have an aqueous 3 Molar solution!
When sulfuric acid (H2SO4) is added to a potassium chromate (K2CrO4) solution, the orange-yellow color of the chromate ions will change to red, due to the formation of chromium ions in the +6 oxidation state (CrO4^2- --> Cr2O7^2-).
MW of H2SO4 is 98.08. 2M = 2 x 98.08 in 1 L of water (1 gram=1 ml). Take 500 ml water in a 1 L measuring cylinder. Add 196.16 ml slowly along the side into water in the measuring cylinder. Use 50 ml pipette with automated pipettor. If needed you may want to keep the cylinder in ice to take care of the heat generated. Then make up to volume to 1 L with water. Eq. wt for H2SO4 = 98.08/2 = 49.039. SO for 2N solution, 2 eq.wt in 1 L. 98.08 ml in 1 L water adopting the method cited above.
Take 159.6 mg white, anhydrous CuSO4 or 249.7 mg blue pentahydrate (CuSO4.5H2O), dissolve in 90 mL distillled water, add 1 mL diluted ammonia (1M NH3) and finally fill up to exactly 100.0 mL with distilled water to get the final 10mM alkaline (ammoniacal) CuSO4solution.