To prepare a 2 M solution of KCl in 1 liter of water, you would need to dissolve 149.5 grams of KCl. This is because the molar mass of KCl is approximately 74.5 g/mol, and 2 moles of KCl are needed to prepare a 2 M solution in 1 liter of water.
To prepare a 0.5 M glucose solution in 1 liter of water, you would need to dissolve 90.08 grams of glucose in enough water to make up the total volume of 1 liter. Start by weighing out 90.08 grams of glucose, add it to a container, and then add enough water to make the total volume up to 1 liter.
One liter of a one molar solution of NaOH in water contains 40g of NaOH. The quantity must be known.
To prepare a molar solution, you need to measure the correct amount of solute (substance being dissolved) in grams and dissolve it in a specific volume of solvent (usually water) to reach the desired molarity. Molarity is the number of moles of solute per liter of solution. You can use the formula: Molarity (M) moles of solute / liters of solution.
To make a 1 molar solution of sodium azide, you would need to dissolve 65.01 g of sodium azide in water to make 1 liter of solution. Since you have 98 mg of sodium azide, you would need to add enough water to make a final volume of 1 liter to create the 1 molar solution.
To prepare a 2 molar salicylic acid solution, you would need to dissolve 17.5 grams of salicylic acid in enough water to make 1 liter of solution. First, measure out the salicylic acid using a balance, then add it to a beaker or flask with some water and stir until dissolved. Finally, add more water to bring the volume up to 1 liter, and mix well to ensure uniform concentration.
To prepare 0.2M solution of anhydrous sodium thiosulfate (Na2S2O3), you dissolve 24.6g of anhydrous Na2S2O3 in distilled water and dilute it to 1 liter. This is the molar mass method, where molar mass of Na2S2O3 is 158.10 g/mol.
Let me translate the question: I think you are asking how to make a 0.1 molar solution of Na2S2O4. Molarity is moles of solute divided by liters of solution. To make this easy, let's assume you want to make one liter of the solution. That means you need to dissolve in 0.1 moles of Na2S2O4 into one liter of water to make a 0.1 molar solution. The formula weight of Na2S2O4 is 174.1 grams per mole so 0.1 moles of it is 17.41 grams. Therefore you would need to dissolve 17.41 grams of Na2S2O4 into one liter of water to make a 0.1 molar solution.
When we say that a solution has a given molarity, it tells you how much of a given substance is dissolved into the solution. A 1.0 molar solution has one mole of a substance dissolved into one liter of water.
You have to dissolve 1.00 mol, that is 98.15 g CH3COOK (its molar mass being 98.15 g/mol), in upto 1.000 L.(Suggested procedure: dissolve 98.15 g CH3COOK in not more then 900 mL, homogenize and fill up to exactly 1.000 L by carefully adding the last millilitres water).
Find out the molecular weight of LactoseAdd that many grams of Lactose into a 1000ml volumetric flaskMake up the volume to 1000ml with waterYour 1 Molar solution of Lactose is ready---------------The molar mass of lactose is 342,3 g/mol; the solubility of lactose is 216 g/L at20 0C. Consequently you cannot prepare a molar solution of lactose.
To prepare a 1 molar solution of a liquid, you need to dissolve one mole of the solute in enough solvent to make a final volume of 1 liter. Start by calculating the mass of the solute needed using its molar mass. Then dissolve this mass of solute in a volumetric flask with some solvent. Finally, add more solvent to reach the 1 liter mark on the flask and mix well to ensure homogeneity.