377.332g (anhydrous)
438.5966g (monohydrate)
499.8476g (dihydrate)
622.353g (tetrahydrate)
744.872g (hexahydrate)
For this you need the atomic (molecular) mass of CaCl2. Take the number of grams and divide it by the atomic mass. Multiply by one mole for units to cancel. CaCl2=111.1 grams7.5 grams CaCl2 / (111.1 grams) = .0675 moles CaCl2
To calculate the number of moles of CaCl2, you first need to find the molar mass of CaCl2, which is 110.98 g/mol. Then, you divide the given number of formula units (1.261024) by Avogadro's number to convert it to moles. So, the answer would be approximately 1.14 moles of CaCl2.
The gram formula mass of CaCl2 is 110.99. By definition, each liter of 0.700 M CaCl2 contains 0.700 gram formula masses of the solute. Therefore, 2.00 liters of such solution contain 1.400 formula masses of the solute, or 155 grams, to the justified number of significant digits.
By definition, one mole would be the same as the molecular mass. You take the number of moles and multiply it by the molecular mass. So if you have just 1 mole, the number of grams will be the added atomic masses of the elements in the compound.Ca- 40.08Cl- 35.5CaCl- 75.6 grams
Oh, dude, let me break it down for you. So, 1 mole of CaCl2 contains 6.022 x 10^23 formula units, right? And you've got 1.26 x 10^24 formula units of CaCl2. So, you just divide 1.26 x 10^24 by 6.022 x 10^23 to get the number of moles. Easy peasy, lemon squeezy!
For this you need the atomic (molecular) mass of CaCl2. Take the number of grams and divide it by the atomic mass. Multiply by one mole for units to cancel. CaCl2=111.1 grams7.5 grams CaCl2 / (111.1 grams) = .0675 moles CaCl2
There are 2 moles of Cl in 1 mole of CaCl2. The molar mass of Cl is 35.45 g/mol. So, in 435 g of CaCl2, there would be 2 moles of Cl, which is equal to 70.9 g of Cl.
Atomic Weight of Calcium = 40 Atomic Weight of Chlorine = 35.5 Therefore, 1 mole of CaCl2 => 40 + 2 (35.5) = 111 g 0.74 moles of CaCl2 => 0.74 (111) = 82.14 g
The balanced chemical equation for the reaction between HCl and CaCO3 is: 2HCl + CaCO3 → CaCl2 + H2O + CO2. The molar ratio between HCl and CaCl2 is 2:1. Calculate the number of moles of HCl from 14.6 g, then use the mole ratio to find the moles of CaCl2. Finally, convert moles of CaCl2 to grams.
0.377 grams of Kr is equal to 0,0045 moles.
124 grams of ethane is equal to 4,124 moles.
370 grams of mercury is equal to 1,844 moles.
There are 0.07871604895385 moles of CaC12 in 14.5g of CaC12.
1,99 grams of aluminum is equal to 0,0737 moles.
15 grams of nitrogen are equal to 1,071 moles.
6,5 grams of sulfur S are equal to 0,203 moles.
89 grams of Pb(CH3COO)4 is equal to 0,2 moles.