S waves travel only through solids, they are known as shear waves and their motion is perpendicular to the direction of travel.
If the direction of motion is to the right, the wave would move up and down.
P waves an move through both solids and liquids, their motion is parallel to the direction of travel.
If the motion is to the right the wave will compress and decompress towards the right.
False. The closer an earthquake is, the shorter the time difference between the arrival of P waves and S waves. P waves travel faster than S waves, so the time interval decreases as the distance to the earthquake epicenter decreases.
As P-waves travel at a higher velocity than S-waves they arrive at a seismometer station before the S-waves. The difference between their arrival time can be used to calculate the distance from the seismometer station to the epicentre.
As the distance from the earthquake to the seismograph station increases, the time interval between the arrival of P waves and S waves also increases. This is because S waves travel slower than P waves, so the further distance allows more time for the S waves to catch up and be recorded after the P waves.
The distance between a seismological recording station and the earthquake source is determined from the arrival times of seismic waves at the station. By comparing the arrival times of P-waves and S-waves, seismologists can calculate the distance to the earthquake source using the difference in their arrival times.
The difference in arrival times of P-waves and S-waves can be used to find an earthquake's epicenter. P-waves travel faster than S-waves, so by measuring the time lag between the arrival of the two wave types at different seismic stations, scientists can triangulate the epicenter of the earthquake.
Yes, that is correct. The time difference between the arrival of P-waves and S-waves increases as the earthquake epicenter gets closer to the seismograph. P-waves are faster, so they arrive first, followed by the slower S-waves.
The arrival time difference between P-waves and S-waves at station 4 would be shorter than at station 3. This is because the further away a seismic station is from the earthquake epicenter, the shorter the time difference between the arrival of P-waves and S-waves. This is due to the faster travel speed of P-waves compared to S-waves.
False. The closer an earthquake is, the shorter the time difference between the arrival of P waves and S waves. P waves travel faster than S waves, so the time interval decreases as the distance to the earthquake epicenter decreases.
As P-waves travel at a higher velocity than S-waves they arrive at a seismometer station before the S-waves. The difference between their arrival time can be used to calculate the distance from the seismometer station to the epicentre.
The arrival time difference between p- and s-waves increases with distance from the epicenter. p-waves travel faster and arrive first, followed by s-waves which are slower. The farther a city is from the epicenter, the greater the time lag between the arrival of the two waves.
lga ietm
As the distance from the earthquake to the seismograph station increases, the time interval between the arrival of P waves and S waves also increases. This is because S waves travel slower than P waves, so the further distance allows more time for the S waves to catch up and be recorded after the P waves.
To determine which observer is farther from an earthquake epicenter, you can compare the arrival times of P-waves (primary waves) and S-waves (secondary waves). P-waves travel faster than S-waves, so if one location records P-waves significantly earlier than S-waves, it indicates that the observer is closer to the epicenter. By measuring the time difference between the arrival of the P-waves and S-waves at each observer's location, the observer with the greater time difference is farther from the epicenter.
The distance between a seismological recording station and the earthquake source is determined from the arrival times of seismic waves at the station. By comparing the arrival times of P-waves and S-waves, seismologists can calculate the distance to the earthquake source using the difference in their arrival times.
To determine which of the two observers is farther from the earthquake epicenter, you can compare the arrival times of P (primary) waves and S (secondary) waves at each location. P waves travel faster than S waves, so the difference in their arrival times increases with distance from the epicenter. By calculating the time difference between the arrival of the P and S waves for each observer, the observer with the larger difference is the one farther from the epicenter. This method leverages the known velocities of P and S waves to estimate the distance to the source of the earthquake.
By finding the arrival time of the P waves and S waves :)
The difference in arrival times of P and S waves.