In a two-coil system, the induced potential difference in the secondary coil depends on several factors: the rate of change of magnetic flux through the coil, the number of turns in the secondary coil, and the strength of the magnetic field produced by the primary coil. According to Faraday's law of electromagnetic induction, the induced voltage is proportional to the rate of change of the magnetic field and the coil's turns. Additionally, the orientation and distance between the coils can also affect the induced potential difference.
"Induced" is the verb you are looking for. A current is induced in the secondary circuit by the current in the first changing, provided both conductors are close enough for the driving current's electro-magnetic field to enclose the second conductor. Note that word "changing". Direct current produces a field but that remains constant and does not induce a secondary current, as a.c. does.
Secondary current = Primary current *(Number of secondary turns /Number of primary) turnsAnswerA current isn't 'induced' into the secondary winding of a transformer. It's a voltage that is induced into the secondary winding.Provided the secondary winding is connected to a load, the secondary voltage then supplies a secondary current which is determined from (Is = Vs/Rload). The primary current then depends upon the value of the secondary current and the turns ratio.
yes indused emf is also called motional emf. If an open coil is subjected to a variable magnetic field, at the ends of the coil a potential difference is induced which is called induced emf. If a coil is connected to an emf source and switched on, the rising current will produced an variable magnetic field which in turn produces an emf. It is called back emf.
An Alternating Voltage is induced in the secondary winding. When connected to an external load, you will have an alternating current.
one condition for the above question is either conductor or magnetic field must be rotating.considering rotating field and stationary conductor,the magnetic flux will be cut up by conductor resulting in the induced emf in the conductor.
"Induced" is the verb you are looking for. A current is induced in the secondary circuit by the current in the first changing, provided both conductors are close enough for the driving current's electro-magnetic field to enclose the second conductor. Note that word "changing". Direct current produces a field but that remains constant and does not induce a secondary current, as a.c. does.
Secondary current = Primary current *(Number of secondary turns /Number of primary) turnsAnswerA current isn't 'induced' into the secondary winding of a transformer. It's a voltage that is induced into the secondary winding.Provided the secondary winding is connected to a load, the secondary voltage then supplies a secondary current which is determined from (Is = Vs/Rload). The primary current then depends upon the value of the secondary current and the turns ratio.
The current flowing in the primary generates a magnetic field which induces a current in the secondary winding.AnswerNo current is induced into the secondary winding of a transformer. What is induced is voltage. Current will only flow in the secondary winding if it is connected to the load, and it is the load that determines the current, not the primary current.
high voltage can be induced in the ct secondary which may sufficient to cause breakdown of insulation.
Electricity does not 'happen' it is induced by a potential difference of electrons. But materials in which electrons may drift, and hence an electrical current can flow, must have delocalised electrons.
The strength of induced current depends on the number of coils of the cunductor and the strength of the magnet.
An autotransformer is a transformer where the primary and secondary are a single winding.
Just as a current flowing through a wire will produce a magnetic field, so a wire moving through a magnetic field will have a current flowing through it. This is called electromagnetic induction and the current in the wire is called induced current. A stationary wire in the presence of a changing magnetic field also has an induced current. A changing magnetic field can be produced either by moving a magnet near to the stationary wire or by using alternating current. A stationary wire in a magnetic field which is not changing will have no current induced in it. You will sometimes see this effect described as induced voltage. Strictly speaking, you will only get an induced current in the wire if it is part of a complete circuit. A wire which is unconnected at both ends will have a difference in voltage between the ends (a potential difference) but current can only flow when the wire is in a circuit. Induced current is used in electricity generation and transformers.Another AnswerThere is no such thing as an 'induced current', only an 'induced voltage'. Current will flow only if the conductor into which the voltage is induced forms part of a closed circuit.
Maintaining a phase displacement between the primary and secondary windings of a transformer allows for the effective transfer of power from the primary to the secondary circuit. This phase difference ensures that the magnetic flux induced in the primary winding can generate a voltage in the secondary winding, enabling power to be transmitted efficiently and accurately between the two circuits.
yes indused emf is also called motional emf. If an open coil is subjected to a variable magnetic field, at the ends of the coil a potential difference is induced which is called induced emf. If a coil is connected to an emf source and switched on, the rising current will produced an variable magnetic field which in turn produces an emf. It is called back emf.
An Alternating Voltage is induced in the secondary winding. When connected to an external load, you will have an alternating current.
Induced voltage is alsocalled ghost or phantom voltage as if you apply a load it vanishes. induced voltage will be potential/electrical pressure. Amperage is the actual flow of current being used, Watts being its calibration of total power used.