This depends on the chosen concentration !
To find the moles of NaCl needed, first convert 140 mM to M by dividing by 1000. Then, use the formula moles = Molarity x Volume (in liters) to calculate the moles required. In this case, the calculation would be: 0.140 mol/L x 1 L = 0.140 moles of NaCl.
Molarity = moles of solute/Liters of solutionMoles of solute = Liters of solution * Molarity ( 100 mL = 0.1 Liters )Moles of NaCl = 0.1 Liters * 0.20 M NaCl= 0.02 moles NaCl============
To find the number of moles of sodium chloride, you can multiply the volume of the solution by its molarity. moles = volume (L) * molarity moles = 5.08 L * 2.36 mol/L moles = 11.9928 mol Therefore, there are approximately 11.99 moles of sodium chloride in 5.08 L of a 2.36 M solution.
Molarity = moles of solute/Liters of solutionGet moles NaCl.58.44 grams NaCl (1 mole NaCl/58.44 grams)= 1 mole NaCl------------------Molarity = 1 mole NaCl/1 liter= 1 M NaCl========
Find moles NaCl first.14.60 grams NaCl (1 mole NaCl/58.44 grams)= 0.2498 moles NaCl================Now,Molarity = moles of solute/Liters of solutionMolarity = 0.2498 moles NaCl/2.000 Liters= 0.1249 M NaCl solution--------------------------------
The total moles of NaCl in the solution is 0.2 mol/L * (0.1 L + 0.4 L) = 0.3 moles. Since NaCl dissociates into 1 Na+ ion and 1 Cl- ion, the total moles of Cl- ions is also 0.3 moles. The concentration of Cl- ions in the resulting solution is 0.3 moles / (0.1 L + 0.4 L) = 0.6 mol/L.
Molarity = moles of solute/Liters of solution Find moles NaCl 300 grams NaCl (1 mole NaCl/58.44 grams) = 5.13347 moles NaCl Molarity = 5.13347 moles NaCl/3000 Liters = 1.71 X 10^-3 M sodium chloride ----------------------------------------
You start by checking how many moles of NaCl you have in your pool. Number of moles=concentration*volume =0.048mole/L*455000L=21840moles Then you get the molar mass of NaCl which is 58.443 g/moles, then you multiply it by your number of moles. 21840 moles*58.443g=1'276'395g=1'276.395kg of NaCl
0.0002 mol NaCl/mLmolarity = (moles solute)/(L of solution)0.20 M NaCl = 0.20 mol NaCl/L1 L = 1000 mL0.20 mole NaCl/1000 mL = 0.00020 mol NaCl/mL (rounded to two significant figures)
Get moles NaCl and change 245 ml to 0.245 Liters. 3.8 grams NaCl (1 mole NaCl/58.54 grams) = 0.0650 moles NaCl Molarity = moles of solute/Liters of solution Molarity = 0.0650 moles NaCl/0.245 Liters = 0.27 M NaCl ----------------------
Every mol of NaCl contains a mol of Na, weighting 23 grams, and a mol of Cl, weighing 35.5 grams. So, every mol of NaCl weights 58,5 (=23+35.5) grams. Therefore, 145 moles of NaCl weights 8482.5 grams.
Balanced equation first! AgNO3 + NaCl -> AgCl + NaNO3 all one to one, get moles AgNO3 3.82 moles NaCl (1 mole AgNO3/1 mole NaCl) = 3.82 moles AgNO3 ------------------------------- Molarity = moles of solute/Liters of solution 0.117 M AgNO3 = 3.82 moles AgNO3/Liters Liters = 3.82/0.117 = 32.6 Liters which is 32600 milliliters which is unreasonable; check answer if you can