Assuming that the density of the solution in 1 gdm-3 :
1 litre = 1dm3= 1 kg = 1000g
290 grams
The average concentration of salt in seawater is around 35 grams per liter. This means there are approximately 35 grams of salt in a liter of seawater.
Tears contain about 3.2 grams of salt or sodium per liter. PS: That would mean, NO chloride is available.
35
3 Simple Steps!NOTE: Use this answer to make a solution if you need to dissolve a SOLID to make your solution. If instead you are making a solution by diluting another solution, see the Related Questions link for "How do you prepare a solution by diluting another solution?" You must know two things to make a solution: the number of moles of the solute, and the number of liters of solution. That is how the concentration "molarity" (M) is defined: the moles per liter:-- Molarity = moles of solute ÷ liters of solutionor-- Moles of solute = Molarity * liters of solutionNote: The volume is liters of solution, not solvent. That means that the total volume of the solution is what matters, not how much liquid you add.So, to make a solution of a specific concentration, we must figure out how many moles of solute we need. That's easy! Let me illustrate with a few simple examples. Then we'll find how many grams that corresponds to.--- Example 1: How many moles of lithium chloride (LiCl) are needed to make 1 liter of 0.5 M LiCl solution?--- Answer: In 1 liter of 0.5 M LiCl, there are 0.5 moles of LiCl. Therefore the answer is 0.5 moles LiCl.--- Example 2: How many more of sodium hydroxide (NaOH) are needed to make 2 liters of 0.5 M NaOH?--- Answer: In 1 liter of 0.5 M NaOH, there are 0.5 moles. So in 2 liters, there will be 1.0 moles. So the answer is 1.0 moles NaOH.--- Example 3: How many moles of silver nitrate (AgNO3) are needed to make 3.7 liters of 0.43 M AgNO3 solution?--- Answer: Same as before, but the math is more complicated. In 1 liter, there are 0.43 moles, so in 3.7 liters, there are 0.43 * 3.7 = 1.591 moles.Now we can't measure moles directly, so we need to find the number of grams of the solute so we can weigh it out. Once we've found the number of moles, we can convert that to grams from the molar mass of the substance (or atomic mass of the element). We need the periodic table for this (see the link below for a periodic table). Again, let me illustrate with a couple of examples. In fact I'll use the same examples as before.--- Example 1: How many grams of LiCl are needed to make 1 liter of 0.5 M LiCl?--- Answer: From before we figured out that we need 0.5 moles of LiCl. So how many grams is that? We first need to calculate the molar mass of LiCl. From the periodic table, the atomic weight of lithium (Li) is 6.941 grams per mole and the weight of chlorine (Cl) is 35.453 grams per mole. So the atomic mass of LiCl is: 6.941 + 35.453 = 42.394 grams per mole. So if we need 0.5 moles, than to find the grams, we just multiply: 0.5 moles * 42.394 grams/mole = 21.197 grams So, to make 1 liter of 0.5 M LiCl, we need to add 21.197 grams of HCl and add enough water to make the total volume equal 1 liter.--- Example 2: How many NaOH are need to make 2 liters of 0.5 M NaOH?--- Answer: From before, we know we need 1 mole of NaOH. The molar mass of NaOH is equal to: 22.9898 + 15.999 + 1.0079 = 39.9967 grams per mole So since we need 1 mole, we add 39.9967 grams of NaOH and add water until we have a total of 2 liters of solution.--- Example 3: How many grams of AgNO3 are needed to make 3.7 liters of 0.43 M acetic acid solution?--- Answer: Again, from before we know we need 1.591 moles of AgNO3. To find the number of grams, we must find the molar mass. So the molar mass of AgNO3 is: 107.868 + 14.007 + (3*15.999) = 169.873 g/mole So to find the number of grams, we just multiply: 1.591 moles * 169.873 g/mole = 270.268 grams. So we must add 270.268 grams of acetic acid, and then add enough water to make the total volume 3.7 liters. (Of course, that'd be really very expensive because silver nitrate is not cheap, and that a lot of it!)TO SUMMARIZE HOW TO MAKE A SOLUTION:1) From the concentration and the volume given to you in the problem, first find the number of moles of solute:Moles of solute = Concentration * Volume (or moles = molarity * liters)2) Then convert moles to grams using the molar mass:Number of grams = Number of moles * Molar mass (or grams = moles grams per mole)3) Then add water to the solid until the TOTAL volume of the solution is the correct amount you need.
35
To prepare a 3% solution of sulfosalicylic acid, you would need 30 grams of sulfosalicylic acid for every 1 liter of solution.
To make a 10% NaOH solution, you would need 100 grams of NaOH per liter of water. So to make 1 liter, you would need 100 grams of NaOH.
The density of urea is approximately 1.32 grams per milliliter. Therefore, in 1 liter of urea solution, there would be roughly 1320 grams of urea.
To prepare a 0.01N solution of sodium metabisulfite, you would need 2.31 grams of sodium metabisulfite per liter of solution.
To find the concentration of a solution in grams per liter, you need to divide the mass of the solute (in this case, 80 grams of NaCl) by the volume of the solution (2 liters). Therefore, the concentration of the solution would be 80 grams divided by 2 liters, which equals 40 grams per liter.
1% solution = 1 gram per 100 mL, 10 grams per liter 20 grams
One degree Brix (°Bx) is equivalent to 1 gram of sucrose in 100 grams of solution.
1 liter = 1000 mL 1 gram = 1000 mg So there are 45,000 mg in 1 liter divided by 1000 mg per gram = 45 grams/liter
Depends on the material in question.
290 grams
To prepare a 10 grams per liter solution of hydrochloric acid (HCl), you would weigh out 10 grams of HCl and dissolve it in enough water to make 1 liter of solution. Make sure to wear appropriate protective gear and work in a well-ventilated area when handling HCl as it is a corrosive chemical.