= Zo = sqrt(L/C) = sqrt(0.294e-3/60e-12) ~ 2214 ohms =
The impedance of a component (inductor or capacitor) will change with frequency - resistor impedances will not. Inductor impedance - j*w*L Capacitor impedance - 1/(j*w*C) L = inductance, C = capacitance, j = i = imaginary number, w = frequency in radians The actual inductance and capacitance does not change with frequency, only the impedance.
The inductance of an inductor is the capacity of the inductor to induce electric flux. The capacitance of a capacitor is the capacity of the capacitor to store charges. THE IMPEDANCE OF A CIRCUIT IS THE TOTAL OPPOSITION OFFERED TO THE FLOW OF ELECTRIC CURRENT.
It doesn't. the impedance of the inductor will, following the rule j*w*l, where l is inductance, w is frequency in radians and j is the imaginary number designating this a reactance, not resistance.
A coil of wire acts as an inductor; it will have a very small resistance, and a relatively large inductance. Power factor is effectively the resistance divided by the impedance (made up of resistance and inductance), so the larger the inductance relative to the resistance, the lower the power factor will be.
Because of stray capacitance. At very high frequencies, the inter-electrode capacitance has a low enough impedance that the diode no longer cuts off when reverse-biased, there is still significant conduction via capacitive coupling. High-frequency diodes are constructed so as to minimize this capacitance.
The impedance of a circuit having an inductance and a capacitance in parallel at the frequency at which this impedance has a maximum value. Also known as rejector impedance.
By increasing Vr,Reducing in series inductance,increase capacitance
The impedance of a component (inductor or capacitor) will change with frequency - resistor impedances will not. Inductor impedance - j*w*L Capacitor impedance - 1/(j*w*C) L = inductance, C = capacitance, j = i = imaginary number, w = frequency in radians The actual inductance and capacitance does not change with frequency, only the impedance.
The inductance of an inductor is the capacity of the inductor to induce electric flux. The capacitance of a capacitor is the capacity of the capacitor to store charges. THE IMPEDANCE OF A CIRCUIT IS THE TOTAL OPPOSITION OFFERED TO THE FLOW OF ELECTRIC CURRENT.
A: As cable lenght increases the impedance changes with frequency especially at half wave lenght where at some frequency the impedance can be zero. The impedance is a function of capacitance inductance and resistance in the cable
higher phase shift lower impedance
Actually surge impedance is present in a transmission line due to the capacitance of transmission line. Now this capacitor attends the reactive power of the transmission line to energise its magnetic flux. now due to the flux the impedance will increase and the power is reactive too. due to the impedance loss is more.
Inductance is inductance, and is not a function of frequency. Frequency affects reactance, and ultimately impedance, not inductance.
No. You have to consider the inductor and the capacitor. Impedance of RLC circuit is equal to to the Value of Resistor Only AND Only on Resonate frequency. otherwise u have to cnsider resistance inductance and capacitance together in series.
A resonator is a circuit that responds to a narrow range of frequencies. A typical resonator is a tuned circuit containing an inductor and a capacitor in series or parallel. A series connected tuned circuit has zero impedance at the resonant frequency, while a parallel tuned circuit has infinite impedance at the resonant frequency. The resonant frequency in both cases depends on the inductance times the capacitance: F = 1 / (2.pi.sqrt(LC)) If the inductance is in Henrys and the capacitance in Farads, the answer is in Hz.
When the input signal to a transmission line is terminated by its characteristic impedance then the signal gets absorbed in the terminating impedance itself and is not reflected back along the line. Thus, no standing waves are produced in the transmission line.
The characteristic impedance or surge impedance belongs to uniform transmission lines.In electronic gears we use voltage bridging, that is a relative low output impedance to a higher input impedance. Usualy the input impedance is more than ten times higher then the output impedance.An input impedance is called also a load impedance or an external impedance.An output impedance is called also a source impedance or an internal impedance.