true
In principle, it is infinite. I have not connected a parallel circuit in ages.
generally voltmeters are connected in parallel in the circuit.If the voltmeter resistance is lower as it increases the current rating,because by connecting parallel we are decreasing the resistance,so if the voltmeter resistance is not too much higher it leads to burning of the meter,For that we can conclude that the in ideal the voltmeter has infinite resistance.
5CommentThe plural of ohm is ohms, not ohm's!
Not sure what you mean. The equivalent (total) resistance in a parallel circuit is less than any individual resistance.
total resistance of a parallel connection network of resisters is equals the total resistance divided by one. 1/total R = 1/R1+1/R2+1/R3+................+1/RN since we get 1/total R from the above formula, to get total resistance (total R) just reciprocate the answer. secondly, if u have only two resistors connected in parallel say R1 & R2, then total Resistance total R=(R1*R2 )/R1+R2 inform.mayaprasad@gmail.com
Resistance is connected in parallel with voltmeter or say, voltmeter is connected in parallel with resistance.
In principle, it is infinite. I have not connected a parallel circuit in ages.
If additional resistance is connected in parallel with a circuit the supply voltage will decrease?
21
When resistors are connected in series, the total resistance is the sum of the individual resistances. When resistors are connected in parallel, the total resistance is less than the smallest individual resistance.
An ammeter is connected in series. A voltmeter is connected in parallel. ammeter should always be connected in series instead of parallel becoz it is a low resistance device and we know that resistance is inversly proportional to current so more current will pass through it and if it is connected in parallel than it may get damaged
Two resistors connected in parallel are 1/2 the sum of their resistance. The resistance of two resistors connected in series is the sum of their resistance. For example: The total resistance of a 100 ohm resistor connected to a 200 ohm resistor in parallel is 100+200 divided by 2 = 150 ohms. The total resistance of a 100 ohm resistor connected to a 200 ohm resistor in series 100+200= 300 ohms.
Resistors connected in parallel have the same voltage across them, while resistors connected in series have the same current passing through them. In a parallel configuration, the total resistance decreases as more resistors are added, while in a series configuration, the total resistance increases.
The resulting resistance of the parallel combination will be the resistance of the original wire divided by n squared.
Shunt means parallel only..................
A resistance 'network' consists of a number of resistors connected together in series, or in parallel, or in series-parallel, or as a complex circuit. A 'complex' circuit is one that is not series, parallel, or series-parallel.
If three equal resistors are connected in parallel, the equivalent resistance will be one-third of the resistance in series. This lower resistance will result in a higher current flowing through the resistors when connected in parallel compared to when they are in series. Therefore, the power dissipated by the resistors in parallel will be greater than 10W.